
University of Milano-Bicocca

Department of Informatics, Systems and Communication

Master’s degree program in Data Science

Unveiling Hidden Information
in Unstructured Documents:

Organization and Hybrid Retrieval
with Knowledge Graphs.

Supervisor: Prof. Matteo Luigi Palmonari

Co-supervisor: Dott. Francesco Abbracciavento

Co-supervisor: Dott. Riccardo Pozzi

Master’s degree thesis by:

Davide Giardini

ID number 897473

Academic Year 2023-2024



Contents

1 Introduction 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Efficient Document Structuring . . . . . . . . . . . . . 5
1.1.2 Hybrid Retrieval System for QA . . . . . . . . . . . . . 7
1.1.3 Comparison with traditional RAG paradigms . . . . . 10

1.2 Key Research Questions and Thesis Outline . . . . . . . . . . 10

2 Related Work on Question Answering Systems 12
2.1 Overview of QA systems . . . . . . . . . . . . . . . . . . . . . 13
2.2 Large Language Models for QA . . . . . . . . . . . . . . . . . 14
2.3 Hybrid QA Models . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Retrieval Augmented Generation for QA . . . . . . . . . . . . 17
2.5 Knowledge Graphs for QA . . . . . . . . . . . . . . . . . . . . 20
2.6 Document structuring for QA . . . . . . . . . . . . . . . . . . 23
2.7 Improving Retrieval in KGQA . . . . . . . . . . . . . . . . . . 29

2.7.1 Node Retrieval . . . . . . . . . . . . . . . . . . . . . . 30
2.7.2 Search Module . . . . . . . . . . . . . . . . . . . . . . 31
2.7.3 Subgraph Retrieval . . . . . . . . . . . . . . . . . . . . 33
2.7.4 Hybrid Retrieval . . . . . . . . . . . . . . . . . . . . . 34

2.8 Summary of Findings and Key Open Challenges . . . . . . . . 36

3 Methodology 40
3.1 Document Structuring . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Retrieval Approaches . . . . . . . . . . . . . . . . . . . 48
3.2.2 Hybrid Retrieval . . . . . . . . . . . . . . . . . . . . . 54

4 Experiments 59
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Natural Questions Dataset . . . . . . . . . . . . . . . . 59
4.1.2 Synthetic Multi-Hop Dataset . . . . . . . . . . . . . . . 64

ii



4.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Evaluation of the Retrieval System . . . . . . . . . . . . . . . 68

4.3.1 Retrieval Metrics . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 Retrieval Performance . . . . . . . . . . . . . . . . . . 71

4.4 Evaluation of the RAG System . . . . . . . . . . . . . . . . . 75
4.4.1 RAG Metrics . . . . . . . . . . . . . . . . . . . . . . . 76
4.4.2 RAG Performance . . . . . . . . . . . . . . . . . . . . 77

4.5 Additional Evaluations and Findings . . . . . . . . . . . . . . 77
4.5.1 Features Importance in Retrieval . . . . . . . . . . . . 78
4.5.2 Evaluation of Key Methodological Choices . . . . . . . 80
4.5.3 Performance with Limited Training Data . . . . . . . . 80

5 Conclusion and Future Developments 82

List of Figures 97

List of Tables 98

iii



Chapter 1

Introduction

The emergence of Large Language Models (LLMs) like OpenAI’s ChatGPT[1]
in late 2022 marked a significant turning point in the evolution of artifi-
cial intelligence and its integration into everyday life. Since then, numerous
other conversational agents have emerged, including Claude by Anthropic1,
Gemini by Google DeepMind[2], and several open-source alternatives, each
contributing to the rapid expansion of the AI ecosystem. These AI-driven
conversational agents have quickly demonstrated their potential to revolu-
tionize a wide range of domains, from customer service and education to
content creation and software development. By providing instant, coherent,
and contextually relevant responses, they have become indispensable tools
for both individuals and organizations, enhancing productivity and democ-
ratizing access to information. To perform tasks and answer users’ ques-
tions, neural language models exploit the knowledge they acquired during
pre-training and that is now “stored” inside their parameters. However, this
way of storing knowledge is not optimal and is the main cause of LLMs’ ma-
jor limitations. One of the most pressing issues is their tendency to produce
“hallucinations”: confidently presenting incorrect or fabricated information
as factual. Additionally, these models operate within the constraints of a
knowledge cutoff, meaning they cannot access or incorporate real-time infor-
mation beyond their last training update. This results in outdated responses
for rapidly evolving fields and an inability to provide personalized or context-
specific information that falls outside their training corpus, such as private or
highly specialized data. These problems constitute an incredible bottleneck
in the implementation of AI in all of those tasks that are knowledge-intensive
or in which the accuracy of the response is crucial.

This problem has been thoroughly tackled in the realm of Question An-
1anthropic.com/news/introducing-claude

1

https://www.anthropic.com/news/introducing-claude


swering (QA), in which a retrieval system is typically employed to identify
relevant documents that may contain answers to user queries. Once a suit-
able document is retrieved, further processing is conducted to extract the
precise answer. Recent advancements have increasingly incorporated LLMs
for this refinement step, demonstrating that their combination with a re-
trieval engine brings to the resolution of most of the model’s aforementioned
problems.

This approach was later expanded and generalized by Lewis et al.[3] to
the entire task of Sequence-to-Sequence (Seq2Seq) modelling with the intro-
duction of Retrieval Augmented Generation (RAG). Instead of relying solely
on their internal parametric memory, RAG models dynamically query ex-
ternal databases or document collections to supplement their responses with
real-time, factual information. Notable implementations include AI agents
like ChatGPT2 and Copilot3, which can now search the Internet in real-time
to supplement their knowledge with up-to-date information. Given all these
benefits, RAG systems too have become a focal point of both academic re-
search and practical deployment in industries[4], as they can make the differ-
ence between a helpful and a useless conversational agent. Key areas of inves-
tigation include the development of more efficient indexing methods[5][6][7],
advanced re-ranking algorithms45, improved Knowledge Base (KB) struc-
tures for optimized retrieval[8][9], and smarter strategies for integrating ex-
tracted context into the model to ensure more accurate and contextually
aligned responses[10]. These efforts are further supported by ongoing work
on the application of RAG systems to domain-specific applications, such as
legal research[11], healthcare[12], and customer support[13], where precision
and reliability are critical.

A robust retrieval engine is therefore crucial in enhancing the quality of
outputs produced by an LLM, regardless of whether the task is QA or RAG.
This component ensures that the model is provided with the most relevant
and accurate context, thereby improving its overall performance and the
reliability of the generated responses.

However, the majority of human knowledge, whether public, private, or
internal to an organization, remains unstructured, typically existing in the
form of textual documents[14][15]. To enable efficient retrieval, such data
must first be organized within a structured repository accessible to the sys-
tem. One of the most widely adopted approaches for this purpose is the

2openai.com/index/chatgpt/
3blogs.microsoft.com/blog/2023/09/21/announcing-microsoft-copilot-your-everyday-

ai-companion/
4haystack.deepset.ai/blog/enhancing-rag-pipelines-in-haystack
5docs.haystack.deepset.ai/docs/lostinthemiddleranker

2

https://openai.com/index/chatgpt/
https://blogs.microsoft.com/blog/2023/09/21/announcing-microsoft-copilot-your-everyday-ai-companion/
https://blogs.microsoft.com/blog/2023/09/21/announcing-microsoft-copilot-your-everyday-ai-companion/
https://haystack.deepset.ai/blog/enhancing-rag-pipelines-in-haystack
https://docs.haystack.deepset.ai/docs/lostinthemiddleranker


use of vector databases[16]. In them, each chunk of text is embedded into
a semantically rich vector, which is then retrieved based on its proximity
to the vector generated from the query, allowing the storage of unstructured
documents in an easy and efficient manner. While this solution definitely has
its advantages, the most important of which being the ease with which any-
one can implement a functioning and useful QA or RAG solution, it focuses
only on the content of the documents, leaving behind all the other informa-
tion that can be inferred from them and that could prove crucial for a more
efficient retrieval. An example of this is the organization of text within docu-
ments, which might be lost when stored in a vector database. Humans often
rely on the inherent structure of documents, such as headings, paragraphs,
and sections, to quickly locate the information of interest. This contextual
organization aids in navigation and comprehension, and for this reason its
removal deprives the retrieval system of crucial information needed to iden-
tify the most relevant chunk, thereby diminishing its effectiveness. Another
crucial aspect is the presence of entity mentions and the semantic relation-
ships between those entities, both within and across documents. While these
connections are implicitly expressed in textual passages, a retrieval system
that relies solely on raw text is unlikely to fully leverage them. This limita-
tion is particularly evident when considering that the relationship between
two entities is typically articulated within a single chunk of text and, as a
result, is lost in any other mention of the same entities appearing in differ-
ent paragraphs. There is a need for a structure that makes these relations
explicit and suitable to be leveraged by the retrieval algorithm.

3



1.1 Objectives
We generalize the informational content of a document along three distinct
dimensions:

1. Content: The textual content of the document.

2. Structure: The hierarchical organization of the document, including
headings, paragraphs, and sections.

3. Entities: The entities mentioned within the documents and their se-
mantic relations.

Given this categorization, our objective is to design a retrieval system,
ranging from document structuring to the retrieval model itself, that can
determine the most relevant chunks by integrating and combining all these
informational dimensions.

Specifically, the main objectives of this thesis are the following:

1. Document Structuring: Developing a Knowledge Graph (KG) rep-
resentation that effectively models a collection of unstructured doc-
uments, focusing on retaining and making explicit all of their infor-
mational dimensions: both the textual content and the more implicit
metadata, such as the organization of passages and the relationships
between entities.

2. Hybrid Retrieval: Designing a retrieval system capable of leverag-
ing this enriched structure, and therefore taking full advantage of all
three informational dimensions to retrieve the most relevant chunks
comprehensively.

(a) Investigating which retrieval methods are more critical in iden-
tifying the most relevant passages, and consequently design the
system to balance the weights in favor of those methods.

3. Comparison with traditional RAG: Understanding whether struc-
turing and enriching documents can offer a valuable benefit in RAG
systems.

The following sections will describe them in more detail.

4



1.1.1 Efficient Document Structuring

Figure 1.1: Comparison of different document representations

Vector DB maintains only the content of the document. A Hierarchical Structure
maintains the document’s organization and its content. Traditional KGs maintain
only entities and their semantic relations. Our proposed representation aims to

maintain all the three different document’s informational dimensions.

In the first place, this thesis aims to create a KG structure that can effectively
represent the initial set of unstructured documents in a new form, focusing
on retaining the textual content while unveiling the more implicit informa-
tion, such as the organization of the text and the relationships between the
entities mentioned within it.

As discussed in greater detail in the chapter concerned with the state
of the art (Section 2.6), existing document representations typically cap-
ture only one or a few informational dimensions of the original documents.
Vector databases, for instance, structure documents as discrete chunks rep-
resented by their embeddings, preserving only textual content while disre-
garding structural and relational aspects. Hierarchical representations, on
the other hand, focus on document organization but fail to capture entity
information and semantic relationships. Similarly, a traditional KG, with
its subject-predicate-object structure, often loses the structural dimension of
the document and may omit some of its content. In contrast, our approach
seeks to define a KG representation that explicitly preserves all three infor-
mational dimensions (textual, structural, and semantic), enabling a retrieval
system to leverage all of them for the identification of relevant chunks.

We are interested in applying this structuring to encyclopedic documents.
We define encyclopedic documents as any collection in which the user’s ab-
straction of an “entity” directly corresponds to the concept of a document
itself. In simpler terms, this method is applicable to datasets where each
document is dedicated to a single entity, providing a comprehensive defini-
tion and description of it. However, while each document must represent a

5



Figure 1.2: Documents structuring into the Knowledge Base

The content of the page is represented within the KG through “Chunk” nodes
(depicted in green), which encapsulate segments of the text. The document’s

structure and organization are explicitly modeled using “SubChapter” nodes and
positional relationships (shown in blue). The central entity described by the

document, along with all referenced entities, are stored in “Entity” nodes (colored
in red) and linked by their semantic relations.

specific entity, our approach also allows for the inclusion of external entities
that do not have a corresponding descriptive document within the collection.
This means that during the entity extraction process, it is possible to identify
and enrich our KB with additional entities that were not originally part of
the document collection.

In particular, a parser is built to extract information from Wikipedia
pages, and structure them in a KG stored in Neo4j6. We select Wikipedia as
the knowledge source because it significantly simplifies the implementation
of the experiment. First of all, Wikipedia follows the necessary encyclopedic
structure: each page deals only with one main topic and each topic can be
defined by its corresponding page. Furthermore, references to the other pages
are highlighted with hyperlinks, making it easy to be parsed. In fact, while
our approach is generalizable to every knowledge source with an encyclope-
dic structure, implementing it on plain text would require the beforehand
application of Named Entity Recognition (NER)[17], Named Entity Linking
(NEL) and Coreference Resolution algorithms[18]. Since the entities within
a Wikipedia page are already highlighted and linked, we are able to focus
on the main objective of the experiment (developing the structure of the KB
and the retrieval system) by skipping the initial document preparation. The

6neo4j.com/

6

https://neo4j.com/


same can be said for the relations between entities: since parallel knowledge
sources like WikiData or DBpedia exists, we can use them to retrieve the type
of connection that links two entities, instead of extracting it with Relation
Extraction models[19].

To achieve this goal, we design a KG whose schema is tailored to ac-
commodate each information type. Entities, represented by the title of the
corresponding page, are stored in “Entity” nodes. These nodes are inter-
connected by extracting the relative relations from DBpedia, but only when
both entities co-occur within the same document. The document’s structure
and organization is retained thanks to “SubChapter” nodes, which are linked
back to their parent Entity node. These nodes facilitate content navigation
by guiding the retrieval algorithm to the most relevant section of the page
that addresses the user’s query. Finally, the actual page content is sliced in
chunks, each forming a “Chunk” node. Chunk nodes are linked back to their
parent Entity or SubChapter, as well as to their adjacent chunks and to all
the entities they reference. A detailed overview of this approach is presented
in figure 1.2.

1.1.2 Hybrid Retrieval System for QA

Figure 1.3: Comparison of Retrieval Systems leveraging informational
dimensions individually

The subsequent goal is to design a retrieval system capable of leveraging this
enriched structure, and therefore taking full advantage of all of the docu-
ment’s informational dimensions.

7



As illustrated by the two examples in Figure 1.3, we argue that a re-
trieval method leveraging only one or two informational dimensions of the
original document is insufficient to appropriately handle all types of queries.
For instance, the question “Where was the song New Gold, in which Tame
Impala is featured, performed live for the first time?” is highly dependent
on the entities mentioned. A retrieval system that relies exclusively on the
hierarchical structure of the original document may struggle to locate the
relevant chunks, as it does not explicitly consider entity relationships. Con-
versely, a system focused purely on content might not always retrieve the
correct chunks. This issue arises because, when encoding the initial chunks
into embeddings, the representation must be generic enough to retain all in-
formation. As a result, the mention of a specific entity may be diluted by
other details present in the chunk, reducing its prominence in the resulting
embedding. To maximize the probability of retrieving the correct chunks
for these particular types of questions, a retrieval method must preserve ex-
plicitly mentioned entities in its representation of the original document and
leverage them during retrieval by comparing them with the query.

On the other hand, a question such as “What is the main theme of Harry
Potter?” directly refers to a specific section of the original document. A
retrieval system that disregards the document’s hierarchical organization,
whether to benefit entities or content’s representation, will struggle to extract
the most relevant chunks for answering this query.

This highlights the need for a hybrid approach that can effectively inte-
grate multiple informational dimensions to enhance retrieval quality across
diverse question types.

We address this challenge with a Hybrid Retrieval system that amalga-
mates together relevance information from various retrieval methods, each
focusing on a particular facet of the KG. Specifically, a “Section Retrieval”, a
“Page Retrieval” and a “SubChapter Selector”, will measure a chunk’s rel-
evance based on its position within the document’s structure, effectively
leveraging the information about the document organization that has been
unveiled by our KG structure. The perspective centered on entities and
their interconnections is instead provided by a “SubGraph Retrieval” and an
“Entity Retrieval” approach. Additionally, a “Vector Retrieval” method is
tasked to retrieve the most relevant chunk purely based on its textual con-
tent. Finally, a Neural Network is trained to integrate these diverse sources,
ultimately determining which Chunk nodes to retrieve to answer the user’s
query.

The intuition behind our approach draws inspiration from ensemble mod-
els[20][21]: machine learning techniques that combine multiple individual
models to enhance predictive performance beyond what a single model could

8



Figure 1.4: Retrieval Pipeline

Each retrieval method offers insights into a chunk’s relevance from its unique
viewpoint: the entities’ semantic relationships (in red), the document’s

organization (in blue) and the textual content (in green). They are then combined
into a Neural Network to provide a final comprehensive measure of relevance.

achieve. These techniques harness the principle of collective intelligence,
where the diversity and complementary strengths of multiple models are
aggregated to reduce errors and improve accuracy. Similarly, our retrieval
framework operates under the premise that each retrieval method offers in-
sights into a chunk’s relevance from its unique viewpoint, and the Neural
Network effectively integrates these insights to deliver a final, optimized re-
trieval decision.

Weighted Hybrid Retrieval

This leads to a secondary research question in this thesis: understanding
which retrieval methods play a more crucial role in identifying the most rel-
evant passages, and subsequently design a retrieval approach that weights
different retrieval methods proportionally to their actual importance.

The goal is to develop a hybrid approach (our Neural Network) that
does not simply assign equal weight to each retrieval method but instead
combines their relevance signals in a way that reflects their actual importance.
By learning how different retrieval techniques contribute to finding the best
answer, this model can adjust their influence, leading to a more precise and
efficient retrieval process. A detailed overview of the retrieval pipeline is
provided in 1.4.

9



1.1.3 Comparison with traditional RAG paradigms

The final objective is to understand whether structuring and enriching doc-
uments can offer a valuable benefit in RAG systems.

To do this, we compare the performance of our proposed system against
a “naive” RAG system, where the KB consists solely of textual chunks rep-
resented in vector form. The evaluation is conducted in two parts. The first
part assesses the pipeline’s performance on punctual questions, i.e. ques-
tions whose answers are explicitly stated in the document and that do not
require additional reasoning. We use question-answer pairs coming from the
development set of Google’s Natural Question (NQ)[22] dataset, with the
corresponding Wikipedia source pages constituting our initial unstructured
encyclopedic collection. The second part of the evaluation focuses instead on
Multi-Hop questions, which require retrieving multiple passages from one or
more documents and performing an additional reasoning step to derive the
answer. We generate Multi-Hop question-answer pairs synthetically from
our KB. The quality of answers from both our pipeline and the naive RAG
system is compared against the ground truth using three metrics: ROUGE,
cosine similarity, and a judgment by an LLM with RAGAS[23], an automatic
RAG evaluation system.

1.2 Key Research Questions and Thesis Out-
line

Here below we summarize the three main research questions of our ex-
periment:

1. Document Structuring: How can unstructured encyclopedic docu-
ments be artificially structured and organized in a KB capable of mak-
ing explicit all of the document’s informational dimensions (content,
structure and entities)?

2. Hybrid Retrieval: How can a retrieval component be designed to
take full advantage not only of the content of a document, but also of
these enriching information?

(a) Which retrieval methods play a more crucial role in identifying the
most relevant passages? How can a retrieval component optimally
weight different retrieval methods proportionally to their actual
importance in identifying them?

10



3. Comparison with traditional RAG: Overall, does the enrichment
of a collection of document in this manner lay the groundwork for a
retrieval system that can actually provide a significant benefit in terms
of the retrieval of a correct passage and the quality of the system’s
answers?

In chapter 2, we will provide an in-depth overview of the state of the art
on the key topics covered in this thesis. We will begin by introducing the QA
task, LLM, and their connections to KGs. Following this, we will examine
how the central research questions of our study have been approached in
previous work. Particular attention will be given to the limitations of existing
methods, allowing us to identify open challenges that remain unresolved and
where further contributions can be made.

In Section 3, we will outline the methodology adopted to tackle our re-
search questions and objectives, detailing how we structure our KG and ap-
proach retrieval to effectively integrate its various aspects. Section 4 will
focus on the practical implementation of the experiment, analyzing the re-
sults and validating the effectiveness of our proposed solutions. Finally, in
chapter 5, we will present our conclusions, discussing the limitations of our
approach and identifying potential directions for future research.

11



Chapter 2

Related Work on Question
Answering Systems

This section provides an overview of the research landscape relevant to the
development of our project. We first examine the broader context of Question
Answering systems in section 2.1, tracing their evolution from early rule-
based approaches to the era of machine learning. We will come in this way to
talk, in section 2.2, about LLMs, how they work, and how they revolutionized
the task of QA, placing particular emphasis on how they acquire and store
knowledge. This in-depth comprehension of how these models work will help
the readers understand why they face issues like hallucinations and outdated
information. To address these issues, the integration of retrieval mechanisms
with LLMs has given rise to Hybrid QA systems, presented in section 2.3,
which combine the reasoning abilities of language models with the dynamic
and precise Information Retrieval (IR) of external databases. This union
between LLMs and retrieval systems will serve as a conceptual bridge to the
introduction, in section 2.4, of RAG systems: a framework that harnesses
retrieval systems to enrich the generative capacities of LLMs. Lastly, in
section 2.5 we will delve into Knowledge Graphs, which are one of the most
widely recognized methods for structuring information. Their significance
lies not only in their broad utilization but also in their practical application
within our own approach, where they serve as a foundational element for
organizing and connecting data. In this way, we aim to provide readers
with an overview of the main fields relevant to our experiment. Of course,
experienced readers already familiar with these topics may choose to skip
this preamble.

Building on this foundation, in section 2.6 we turn our focus to the first
question of our experiment, exploring various methods for structuring and
organizing unstructured documents. This section will not only serve as a

12



source of inspiration but also as a critical analysis to identify the limitations
of these approaches, paving the way for improvements in our implementation.

Through this exploration, we will naturally transition to discussing QA
systems specifically designed around graph databases and Graph-RAG sys-
tems. By combining the retrieval efficiency of graph-based structures with the
generative power of LLMs, Graph-RAG systems offer a promising approach
for addressing the limitations of traditional QA paradigms. The literature
will provide the conceptual framework for our second research question, as we
will examine how different authors handle retrieval in their databases, with
particular attention to hybrid systems that combine knowledge from multiple
sources. This analysis, described in section 2.7, will help us understand the
strengths and weaknesses of existing approaches, informing the development
of our own Graph-RAG system. Finally, in section 2.8, we will summarize
the key findings on document structuring and hybrid retrieval, highlighting
the key open challenges.

2.1 Overview of QA systems
Question Answering is a subfield of Natural Language Processing (NLP)
and IR designed to generate precise answers to users’ queries expressed in
natural language. IR systems, like traditional search engines, are in fact
not designed to return an answer, but to retrieve a list of documents ranked
on their relevancy relative to a user’s query. QA systems, instead, aim to
provide precise responses, often in the form of a sentence or a paragraph,
being in this way more aligned to users’ needs and expectations[24].

Before the advent of LLMs, QA systems were composed of three distinct
modules: question classification, in which the query is classified in a specific
set of types, an IR system, used to retrieve the most relevant documents, and
an answer extraction systems, that extracts the answer from the retrieved
documents based on the query type[25]. To perform this last step, previ-
ous QA systems relied on NER, Part-of-Speech (POS) taggers and simple
keyword matches to identify and extract only the relevant word or phrase.
For example, systems like AskMSR[26] demonstrated as early as 2002 that a
lightweight, pattern-based approach could deliver competitive performance
by leveraging redundancy - i.e. identifying repeated occurrences of similar
answers across multiple snippets - without relying on deep linguistic process-
ing.

The introduction of machine learning methods, particularly deep learn-
ing, marked a paradigm shift. LLMs, particularly those based on the trans-
former architecture, quickly revolutionized the field of NLP and QA with

13



it. Models like Bidirectional Encoder Representations from Transformers
(BERT)[27] demonstrated unprecedented performance in QA benchmarks
such as SQuAD (Stanford Question Answering Dataset)[28], setting new
standards in understanding context and semantics.

2.2 Large Language Models for QA
On a high-level overview, LLMs are probabilistic models that are trained to
predict the most probable word (more properly a “token”) conditioned on a
previous sequence of words.

LLMs are the result of decades of progress in neural network architectures,
but the real turning point came with the introduction of the transformer ar-
chitecture, detailed in the paper “Attention is All You Need” by Vaswani et
al. in 2017 [29]. The transformer architecture quickly became the corner-
stone of artificial intelligence, revolutionizing the field with its versatility and
performance. Not only it was incredibly efficient for NLP tasks [30], but its
adoption extended far beyond, finding applications across virtually every do-
main of AI, including computer vision, speech recognition and reinforcement
learning. While an in-depth explanation of how LLMs are trained and how
they work is out of the scope of this thesis, we are going to briefly introduce
the transformer architecture in order to explain how they are able to store
and recall facts and subsequently answer the user’s question. By compre-
hending how knowledge is stored inside these models, we believe that the
reader will gain a deeper understanding of the beauty as well as the limita-
tions of parametric memory and the consequent necessity for complementary
systems like RAGs.

The protagonist of this revolution is attention, a mechanism that allowed
models to focus on different parts of the input sequence simultaneously, rather
than sequentially. The self-attention mechanism enabled transformers to ef-
ficiently capture long-range dependencies by assigning varying levels of im-
portance to different tokens within a sequence, regardless of their position.
In particular, multi-head self-attention allows the model to learn different
types of relationships in parallel. These features not only addressed the limi-
tations of RNNs but also significantly improved the computational efficiency
and scalability of language models.

Along with attentions layers, transformers use Feed Forward Layers to
extract additional patterns from the training data. The feed-forward network
typically consists of two linear layers separated by a non-linear activation
function, commonly ReLU (Rectified Linear Unit). Recent findings, like the
study from Meng et. al. [31], suggest that in transformers facts are primarily

14



stored in the middle layers of these Feed Forward Networks rather than in
the attention mechanism.

Given their behavior, from the inception of transformer-based LLMs
the primary thrust was on assimilating additional knowledge through Pre-
Training, essentially maximizing the networks’ capacity of recalling facts by
augmenting its parameter and the data used for training. Many papers
delved into exploring the advantages and limits of this approach. Petroni
et. al. [32] present an in-depth analysis of the relational knowledge already
present (without fine-tuning) in a wide range of state-of-the-art pretrained
language models. They find that without fine-tuning, BERT contains rela-
tional knowledge competitive with traditional NLP methods that have some
access to oracle knowledge. Moreover, they find that BERT also does re-
markably well on open-domain QA against a supervised baseline. Roberts
et. al.[33] fine-tune pretrained models to answer questions without access to
any external context or knowledge. They show that this approach scales with
model size and performs competitively with open-domain systems that ex-
plicitly retrieve answers from an external knowledge source when answering
questions. That is not to say, though, that LLMs can solve the task of QA
by themselves. This last study, in fact, presents in its conclusions multiple
concerning problems that their approach faces:

1. A model of that size can be prohibitively expensive.

2. While “open-book” models provide some indication of what information
they accessed when answering a question, an LLM distributes knowl-
edge in its parameters in an inexplicable way.

3. LLMs tend to produce “hallucinations”, i.e. realistic-looking but false
answers, when they are unsure.

4. An approach of this type gives no guarantees as to whether or not a
model will learn a fact. This prevents the users from explicitly updating
or removing knowledge from a pre-trained model.

As one may assess, these are serious problems that make these models
inconvenient for numerous tasks[34], and hence need to be addressed.

15



2.3 Hybrid QA Models
Numerous past studies have developed architectures that integrate non-
parametric memories into systems trained from scratch specifically for certain
tasks. These methods include memory networks[35][36], stack-augmented
networks[37], and memory layers[38].

Hybrid Models, though, gained much more traction, thanks to their abil-
ity to address most of the issues that LLMs face. These models, in general,
work by combining parametric and non-parametric memory, essentially lever-
aging a retrieval engine just like pre-LLM QA systems. Instead of extracting
the exact word or phrase from the retrieved documents, though, they con-
dition generative models on these contexts in order to generate (or extract)
the answer. This approach allows knowledge to be not only directly revised
and expanded but also accessed for inspection and interpretation[3].

In 2019, K. Lee, M. Chang and K. Toutanova introduced ORQA (Open-
Retrieval QA), a novel approach for tackling open-domain QA in a weakly
supervised setting[39]. In this approach, the retriever uses a dense represen-
tation model, encoding both the question and candidate documents into a
shared embedding space with a dual-encoder architecture. Candidate docu-
ments are then retrieved based on their similarity using approximate nearest
neighbors. ORQA is also one of the first methods that uses a transformer-
based LLM (BERT) as the reader module, to process the retrieved documents
and predict the most likely answer span. All of these architectural choices,
combined with a jointly training of the retriever and reader components, al-
lowed ORQA to achieve state-of-the-art results on several open-domain QA
datasets, such as NQ[22] and TriviaQA. In this way, this paper popularized
in the field the use of dense vector-based models for the retriever module
and pre-trained language models for the reader module, paving the way for
subsequent advancements.

Retrieval Augmented Language Model pretraining (REALM)[40], for ex-
ample, builds upon ORQA insights by showing for the first time how to
pre-train a knowledge retriever in an unsupervised manner, using masked
language modeling as the learning signal and backpropagating through a re-
trieval step that considers millions of documents. Dense Passage Retrieval
(DPR)[41], instead, focuses on further refining the retrieval and extraction
pipelines. While in ORQA the retriever is optimized indirectly via weak su-
pervision from the reader, the authors of DPR introduced explicit supervision
for the retriever by using labeled positive passages and hard negatives. By
training the retriever directly with contrastive learning, DPR achieves more
effective and faster optimization compared to ORQA’s latent objective. DPR
also employs FAISS(Facebook AI Similarity Search)[42] for an approximate

16



nearest neighbor (ANN) search, enabling efficient retrieval from large corpora
with billions of passages. This makes DPR far more scalable and practical
for real-world open-domain QA tasks compared to ORQA. This work con-
solidated dense retrieval as a core technique for open-domain QA, serving as
one of the main inspiration for subsequent research, including the conception
of Retrieval-Augmented Generation.

2.4 Retrieval Augmented Generation for QA

Figure 2.1: RAG architecture

Retrieval Augmented Generation was introduced in 2020 by Lewis et al. in
the seminal paper “Retrieval-Augmented Generation for Knowledge-Intensive
NLP Tasks”[3]. The main idea behind this work was to build on the concept
of combining language models with a differentiable retriever, that REALM
and ORQA proved to be promising, and extend it to the field of Seq2Seq
modeling. To achieve that, the authors employed a retriever based on DPR
and paired it with a Seq2Seq model, BART[43], to condition the generation of
responses on both the input query and relevant retrieved documents. RAG
enhances the capabilities of generative models by augmenting them with
relevant, external information retrieved from a large knowledge base (e.g.,
document corpora or search engines). This integration enables the model to
produce responses that are more accurate, diverse, and informative compared
to standalone language models.

The pipeline, illustrated in figure 2.1, is often divided in literature into
three phases. Prior to execution, the documents composing the KB are
embedded using an embedding model. The pipeline then proceeds as follows:

1. In the Retrieval Phase the user’s query is embedded and used to
retrieve the most relevant documents from the KB based on similarity
in the embedding space. Often, the same embedding model is used

17



both on the documents and the query, to ensure that the generated
vectors are aligned.

2. In the Augmentation Phase the retrieved documents are combined
with the query and injected as additional context into the language
model.

3. In the Generation Phase the language model generates a response
to the user’s query conditioned on the retrieved context.

In their paper, Lewis et al. demonstrate that this simple paradigm can
achieve state-of-the-art results on open NQ, WebQuestions and CuratedTrec
and strongly outperform recent approaches that use specialized pre-training
objectives on TriviaQA. Notably, RAG produces responses that are more
factual, specific, and diverse than a BART baseline. Moreover, they demon-
strate how the non-parametric memory can be replaced to update the models’
knowledge, essentially resolving one of the key issues of LLMs. As for what
regards the other problems that LLMs face, just like hybrid QA systems,
RAG drastically lowers the probability of producing hallucinations and is
able to provide indication of what information it accessed when answering a
question.

Since the effectiveness of this paradigm was evident, numerous research
emerged in the following years to try and improve all the stages of the
pipeline. Notably, the “Naive” RAG (the name that will be given to the ini-
tial architecture to differentiate it from subsequent improvements) suffered
from challenges in all of its stages. Y. Gao et al. have compiled a comprehen-
sive survey[4] regarding these issues and how they have been dealt in later
advanced iteration of the RAG paradigm.

One way to enhance retrieval is by refining the KB itself. This can involve
optimizing data indexing by adjusting chunk sizes, adding metadata (e.g.,
dates or chapter references), or improving the KB’s quality. Steps such as
removing irrelevant information, verifying factual accuracy, and updating
outdated documents have proven effective in boosting retrieval performance.

More advanced techniques focus on improving the embedding model or
the retriever. Fine-tuning the embedding model, for example, can signifi-
cantly enhance relevance in domain-specific contexts. In fact, while state-
of-the-art models like ada-v2[44], AngIE[45], Voyage[46], and FlagEmbed-
ding[47] are trained on extensive corpora, their ability to capture domain-
specific nuances is limited. Fine-tuning these models on a specialized dataset
aligns them with the target domain’s requirements.

Query rewriting is another effective approach that modifies user queries
to better align them with relevant documents. For instance, Hypothetical

18



Document Embeddings (HyDE), introduced by Gao et al.[48], generate hy-
pothetical responses to queries using an LLM. These responses are embedded
and used to retrieve similar documents from the KB. The idea is that LLM-
generated responses to the query could be closer in the vector space to the
relevant documents than the query itself. While this has proven to be use-
ful in certain cases, when the LLM lacks domain-specific knowledge it may
generate inaccurate responses, which could lead to the retrieval of irrelevant
documents.

For systems designed to answer precise and factual questions, replacing
the retriever with a “Search Module” can be beneficial. Such modules use
LLMs to generate structured queries in languages like SQL or Cypher[8]. We
will return to this approach when talking about the retrieval component in
RAG systems based on KGs.

In the augmentation and generation stage redundancy and repetition are
concerns, as they could introduce noise and make the LLM loose focus on
crucial information. Prompt Compression is a post-processing technique that
involves compressing irrelevant context, highlighting pivotal paragraphs and
reducing the overall context length. Approaches such as Selective Context[49]
and LLMLingua [50] utilize small language models to calculate prompt mu-
tual information or perplexity, estimating element importance.

Another set of techniques developed to tackle this issue are re-rankers,
which proved to be a key strategy to improve RAG systems. Re-ranking
consists in post-processing the retrieved documents in order to perform a
second, more precise, screening. Diversity Ranker1, for example, prioritizes
reordering based on document diversity, in order to avoid information rep-
etition. LostInTheMiddleRanker2, instead, has been developed to alternate
the placement of the best document at the beginning and end of the context
window. This functioning is based on the notion that the order in which
information is presented can directly influence the context passages on which
the model places the most emphasis while generating its response. The study
of N. Liu et al. [51] highlights in fact that language models often struggle to
effectively utilize information placed in the middle of long contexts, suggest-
ing that placing key information at the beginning or end of the context can
lead to better performance.

1https://haystack.deepset.ai/blog/enhancing-rag-pipelines-in-haystack
2https://docs.haystack.deepset.ai/docs/lostinthemiddleranker

19



2.5 Knowledge Graphs for QA
Knowledge Graphs are one of the most widely recognized methods for struc-
turing information. The organization of data in graph form is so intuitive to
humans that the concept of Knowledge Graphs is a well-established technol-
ogy that has been in use for quite some time. However, it was the advent
of the Semantic Web and linked data principles in the early 2000s that pro-
pelled the widespread adoption of KGs. Initiatives like Resource Description
Framework (RDF)3 and Web Ontology Language (OWL)4 provided formal
frameworks for defining and querying structured knowledge. The concept
of “Knowledge Graph” gained even more traction among the public in more
recent years. In particular, it was the announcement of “Google Knowledge
Graph” [52] in 2012 and the following development of the same tool by major
companies like Airbnb, Amazon, eBay, FaceBook, iBM, LinkedIn, Microsoft,
that made the concept so popular[53].

KGs are a network of interconnected nodes and edges, where nodes rep-
resent entities (such as people, places, or concepts) and edges represent the
relationships or connections between those entities. Formally, KGs store
structured knowledge as a set of triples KG = {(h, r, t) ⊆ ε×R× ε}, where
ε and R respectively denote the set of entities and relations. This particu-
lar way of representing information is what makes KGs useful, unique and,
still today, a very powerful tool for representing and organizing complex in-
formation. KGs structure human concepts in a way that makes it possible
for machines to “reason” over them: by formalizing relationships between
entities, KGs allow algorithms to infer new insights, perform logical reason-
ing, and draw connections across disparate pieces of information. For these
reasons, they find applications in a wide range of fields: they power search
engines like Google, enable personalized recommendations in e-commerce,
enhance data governance practices, and underpin fraud detection systems.
In conversational AI, they provide context-aware responses, while in criti-
cal decision support systems, such as those used in healthcare, finance or
supply chain management, they offer a reliable framework for synthesizing
information.

S. Pan et al.[54] present a roadmap for unifying KGs and LLMs, providing
insights of state-of-the-art systems that combine these tools and demonstrat-
ing future research directions. As the authors highlight, the potential of this
combination lies in the fact that these two tools are perfectly complementary,
with the weaknesses of one tool being the strengths of the other. KGs are a

3https://www.w3.org/RDF/
4https://www.w3.org/OWL/

20



rigid and structured way of representing knowledge, making them accurate
and easy to interpret. On the other hand, LLMs have their knowledge stored
implicitly in their parameters, making them prone to hallucination and im-
possible to interpret. LLMs can also lack domain specific or new knowledge,
as they operate within the constraints of a knowledge cutoff, while KGs can
be easily tailored to one specific domain and can effortlessly be updated. That
is not to say that KGs are perfect. They can often be incomplete and, when
this happens, they have no capacity of reasoning over lacking information.
In this respect, since LLMs are trained on impressive amount of information,
they are packed with general knowledge and are able to generalize to unseen
facts, making them exactly complementary to KGs’ weaknesses.

In their roadmap, the authors identify three frameworks in which research
directions can be divided:

1. KG-enhanced LLMs
Includes research efforts that leverage the capabilities of KGs to address
challenges associated with LLMs.

(a) KG-enhanced LLM pre-training enhances the pre-training stage
of the LLM with knowledge from KGs[55][56].

(b) KG-enhanced LLM inference consists in retrieving knowledge from
KGs and incorporating it into the LLM during inference, in this
way enabling them to access knowledge without retraining. This
is the main focus of this thesis, to which the next chapters are
going to be dedicated.

(c) KG-enhanced LLM interpretability uses KGs to understand the
knowledge learned by LLMs[32] and their reasoning process[57].

2. LLM-augmented KGs
Includes research efforts that leverage the capabilities of LLMs to ad-
dress challenges associated with KGs. These includes enriching KGs
with embeddings[58], constructing KGs from unstructured natural lan-
guage documents[59] and generating coherent natural language texts
from existing KGs[60][61].

3. Synergized LLMs + KGs
Explores approaches that integrate LLMs and KGs to leverage the
strengths of both paradigms, allowing each to address the limitations of
the other. One prominent direction is Synergized Knowledge Represen-
tation, which aims to develop unified models capable of capturing and
representing knowledge from both text corpora (implicit and unstruc-
tured) and KGs (explicit and structured)[55][62][63]. Another key focus

21



is Synergized Reasoning that focuses instead on design models that can
effectively conduct reasoning with both LLMs and KGs[64][65].

Although this thesis focuses on KG-enhanced LLM inference, it is im-
portant to provide a brief overview of KG construction from unstructured
text. While we will not directly implement these technologies, relying in-
stead on Wikipedia’s hyperlinks to extract and link entities, readers aiming
to replicate our findings with different documents may need to apply these
techniques to structure information in a similar manner.

During the years, many public KGs designed to store as much knowledge
as possible have been developed through collaborative effort and through the
development of automatic extraction tools. Encyclopedic KGs, like DBpe-
dia[66], Freebase[67] and WikiData[68], have been built to cover factual or
event knowledge from different domains. Linguistic KGs, like WordNet[69],
were instead built to store semantic relations between words, and are of-
ten used to create high-performance word embeddings. However, the vast
majority of information still exists in the form of unstructured text. While
RAG frameworks are becoming more and more popular in industries, the
adoption of their combination with KG is undermined by the difficulties that
arise in building the latter. For this reason, extracting structured knowledge
from unstructured text has become a crucial task in NLP and has garnered
significant attention from both academia and industry.

This field of academic literature is called Automatic Knowledge Graph
Construction (AKGC), and is defined as the process of constructing KGs
from unstructured text[18]. Traditional approaches to RDF heavily relied on
rule-based methods and hand-crafted features, therefore requiring extensive
domain expertise and being limited in their ability to scale to large datasets.
With the advent of deep learning and the advancements in NLP, the task
of RDF shifted into a multiple-step pipeline that first discovers (NER) and
links (NER) conceptual entities, resolves coreference mentions (Coreference
Resolution), and finally extracts relationships among entities (Relation Ex-
traction)[18]. This demonstrates, though, how complex developing an AKGC
tool can be, as it requires to build multiple models (one for each step) and
join them together in a cohesive pipeline. Companies and research groups
that may want to implement KGs in their solutions may be discouraged by
the effort required to transform their documents into structured form.

In more recent years, though, researchers have validated the possibility
to use LLMs to construct a KG from documents written in natural language.
This is the case, for example, of the work of Kumar et al.[59], that uses one
fine-tuned LLM for entity extraction and a second LLM for relation extrac-
tion, or Han et al., that proposes a prompting technique with an iterative

22



verification framework. This represents an important shift in the field, as it
significantly lowers the entry barrier, thus allowing companies and researchers
to build their KGs from documents without any excessive effort.

The abilities that LLMs showcase have brought the community to use
them as well, in combination with clever prompt engineering, as KG con-
structors from texts56. Although the results may not be as precise, this
method permits to extract triples from text in a fast and efficient way, low-
ering the required effort even further. This simple approach gained so much
traction that Neo4j itself implemented LangChain’s graph transformers7 to
allow their users to build graphs directly from documents. The key takeaway
here is that anyone wishing to develop a solution using a Knowledge Graph
should no longer feel discouraged by the effort required in its construction,
since tools such as those just mentioned are available to make the task as
easy as it has ever been.

2.6 Document structuring for QA
Table 2.1 provides a summary of state-of-the-art methods for document struc-
turing in QA. Our primary goal is to assess how each approach preserves and
highlights the different informational dimensions of the original documents.
As we will observe in this section, most methods focus on a single dimension,
prioritizing what they consider most relevant for their specific use case. Only
a few of them attempt to retain multiple aspects of the original documents,
yet they often come with certain limitations.

As said in 2.4, the “naive” RAG approach involves segmenting the text
into smaller chunks and converting these into vector representations stored
in a vector database. The ease of implementation of this method has made
it exceptionally common among businesses and researchers. This process
typically focuses on the semantic embedding of each chunk, which determines
its placement in the vector space. However, this method often results in
chunks being loosely connected, with their organization relying mainly on
the semantic proximity in the embedding space. Any additional structure or
context from the original document is usually preserved only through basic
metadata, such as document identifiers or segment annotations, leading to a
loss of the broader document hierarchy and context.

5Rahul Nayak in “Towards Data Science”, Nov 10 2023, towardsdatascience.com/how-
to-convert-any-text-into-a-graph-of-concepts

6LangChain LLMGraphTransformer documentation: langchain.com/en/latest/graph-
transformers

7https://github.com/neo4j-labs/llm-graph-builder

23

https://towardsdatascience.com/how-to-convert-any-text-into-a-graph-of-concepts-110844f22a1a
https://towardsdatascience.com/how-to-convert-any-text-into-a-graph-of-concepts-110844f22a1a
https://api.python.langchain.com/en/latest/graph_transformers/langchain_experimental.graph_transformers.llm.LLMGraphTransformer.html
https://api.python.langchain.com/en/latest/graph_transformers/langchain_experimental.graph_transformers.llm.LLMGraphTransformer.html
https://github.com/neo4j-labs/llm-graph-builder


Method Approach Description Content Structure and
Organization

Entities and
Semantic Relations

Other Limitations

Naive DPR[41],
RAG[3]

Splits text into
chunks of similar
dimensionality.

Maintained in
chunks.

Can be maintained
only by basic
metadata or
annotations.

Lost -

Segmenta-
tion

ULSSoLD[70],
Lumber
Chunker[71]

Identify and classify
semantic section of
documents.

Maintained in
chunks.

Chunks and their
classification can
reflect relationships
and hierarchies.

Lost While segmented and
labeled, sections are
not organized in a
more explicit
structure.

Traditional
KG

AKGC[18] Represent
information in atomic
formatting: Subj,
Pred, Obj.

Not all information
can be represented
in atomic form.

Lost Maintained in nodes
and edges.

-

Dual Layer KG-
Retriever[72]

Bottom Layer:
Traditional KG
Upper Layer:
document similarities.

Not all information
can be represented
in atomic form.

Maintained in the
upper layer, but
sections are lost.

Maintained in the
bottom layer.

-

Hybrid
Knowled-
GPT[8]

Traditional KG
enhanced with some
triples having the
object as a chunk of
text.

Maintained in
enhanced nodes
and relations.

Lost. Maintained in the
traditional node and
edge structure.

KG structuring is not
rigid, but determined
by an LLM on a
case-by-case basis.

GraphRAG[73] Traditional KG
enhanced by
enriching nodes and
relationships with
textual descriptions.

Maintained in
enhanced nodes
and relations.

Graph Communities
are created, but the
structure of the
original doc is lost.

Maintained in the
traditional node and
edge structure.

-

Chunk
Graph

DHR[74] Structure documents
as hierarchical trees
with document titles
as roots, section titles
as intermediate
nodes, and chunks as
a leafs.

Maintained in
nodes.

Maintained in the
structure of the KG

Lost. -

customer
KG-RAG[13]

Structured KG for
customer service
tickets.

Maintained in
nodes.

Maintained in the
structure of the KG

Entities are lost.
Semantic relations are
maintained only in
the form of semantic
similarities.

The structure is rigid
and specific for
tickets.

KGP[75] Documents are
maintained and
connected to their
chunk nodes. Chunks
are linked based on
their lexical and
semantic similarity.

Maintained in
nodes.

Each document is
connected to their
respective chunk, but
sections are lost.

Entities are extracted,
but not stored, to
connect lexically
similar chunks.
Semantic relations are
maintained only in
the form of semantic
similarities.

Documents are not
interconnected, but
linked solely to their
respective chunks.

Docs2KG[76] Identifies chapters,
subchapters,
paragraphs, and
sentences as nodes.
Links them with
structural and
semantic relations.

Maintained in
nodes.

Maintained through
“has-child”, “before”
and “after” relations.

Entities are not
extracted. Semantic
relations are limited
to “same time”,
“focus”, “support by”,
“explain”.

-

Table 2.1: State-of-the-Art Methods for Document Structuring

For each approach, we describe whether and how it preserves the three
informational dimensions of the original document: content, structure and

entities.
24



That is not to say the the simple division of the content into chunks is in
total contraposition to a more in depth understanding of the structure of the
document. M Rahman and T. Finin[70], for example, develop a framework
that can analyze a large document and help the user find where a particular
information is located. They do this by employing Deep Learning models
to automatically identify and classify semantic sections of documents while
assigning consistent and human-understandable labels. Another example of
a solution that tries to define a more organized structure while still focusing
primary on the textual content is LumberChunker[71], a method that lever-
ages an LLM to dynamically segment documents. LumberChunker works
by iteratively prompting the LLM to pinpoint the exact location within a
series of sequential passages where a shift in content begins. These methods
go beyond merely splitting the text into chunks: they introduce sophisti-
cated techniques that aim to better preserve the logical and semantic struc-
ture of the original document. By leveraging these techniques, the resulting
chunks are not just isolated pieces of text but are carefully segmented to
reflect deeper relationships and hierarchies within the document, enhancing
the overall coherence and retrieval effectiveness. Though, they only focus on
segmenting and labeling passages of a document, without organizing them
in a more explicit structure.

As we discussed in section 2.5, KGs are instead a significantly more
structured way of representing information. AKGC tools[18] typically fo-
cus on constructing traditional KGs, where the information is represented
as Subject-Predicate-Object triples, with both Subject and Object being
atomic entities. This approach involves extracting entities and relationships
from the original text., with the goal of transforming the document’s content
into a structured representation of facts through these triples. While this
traditional structure proved to be efficient multiple times, when extracting
triples from a set of documents we completely loose the text’s organization.

An attempt to solve this issue, while retaining the traditional graph struc-
ture composed of atomic entities, is presented in KG-Retriever[72]. In it,
authors W. Chen et al. propose a dual layer structure. In the bottom layer,
relationships between entities mentioned within each document are modeled
by an LLM inside an entity-level graph. In the upper layer, a document-level
graph is constructed to improve RAG’s capability of integrating information
across multiple documents, with each edge representing the similarity be-
tween the corresponding records. Each document in the upper layer is then
connected to the corresponding KG in the bottom layer.

Though, the authors of KnowledGPT[8] argue that a significant portion
of information can hardly be represented in this “atomic” formatting anyway.
For this reason, they enrich their traditional KG by proposing an additional

25



knowledge representation, termed as “entity-aspect information”, that con-
sists in a variation of triple where the object is a long piece of text. For
example, the node “Harry Potter” could be connected via a “description” re-
lation to an entire paragraph from the book describing his appearance (e.g.,
“Harry had always been small and skinny for his age. . . ”), rather than being
constrained to extract atomic entities and relationships (e.g., “Harry Pot-
ter”, body_type, “skinny”), which the authors argue that might risk losing
important contextual or implicit information.

While it is not the central focus of the paper, they prove their argument
by investigating the knowledge extraction coverage of their tool on 100 doc-
uments from HotpotQA[77] by employing the word recall rate, computed
as

|Wextracted ∩Wdoc|
Wdoc

where Wextracted and Wdoc denote the set of words in the extracted knowl-
edge and the starting document respectively. Preprocessing was applied by
removing stop word and applying lemmatization. Results show that the ex-
traction coverage stands at 0.53 when solely relying on triples representation.
This indicates that only a limited portion of knowledge can be represented
in such form. With the employment of entity-aspect information and entity
descriptions this metrics rise by about thirty percentage points, suggesting
that incorporating textual nodes enables KnowledGPT to populate the KB
with a broader spectrum of knowledge.

What remains unexplored in the KnowledGPT paper is how textual chunk
nodes can be systematically integrated into a well-defined and organized
structure. The process of knowledge extraction from documents is in fact
delegated to an LLM, which is provided with various possible representations
of the document, such as entity descriptions, relational triples, or entity
aspect information. As a result, this representation is not systematically
structured but is instead determined by the LLM on a case-by-case basis.
Moreover, while a chunk node may be linked to an entity via its predicate,
it loses any contextual information regarding its original position within the
document, leading to a disconnection from the document’s inherent structure.
These shortcomings are also shared by approaches like Graph RAG by D.
Edge et al.[73] which, despite attempting to enhance their representation by
enriching both entities and relationships with descriptions, fail to preserve the
data concerning how that information was organized in the source document.

While both KnowledGPT and Graph RAG strike a balance between tra-
ditional entity nodes and chunk nodes, other approaches prioritize chunk
nodes as the core of their representation. For instance, DHR[74] prioritizes
preserving the hierarchical structure of the original document at the expense

26



of entity information and their semantic relationships. In this approach, doc-
uments are modeled as hierarchical trees, where document titles serve as root
nodes, section titles as intermediate nodes, and chunks as leaf nodes.

In contrast, Z. Xu et al. [13] propose a representation that does not
strictly focus on a single informational dimension of the original document
but instead seeks to preserve aspects of each. Their work focuses on trans-
forming unstructured ticket data into a well-defined KB, enhancing the in-
formation with additional context and relationships. Similar to the approach
taken by KG-retriever, the authors focus on capturing both intra-document
and inter-document relationships, but they integrate these within a unified
KG for a more cohesive representation. For intra-document relationships a
hybrid approach is used, starting with rule-based extraction for predefined
fields that can be identified by keywords and continuing with the employ-
ment of an LLM for more complex unstructured text. The LLM is guided
by a YAML template that maps common ticket sections into graph struc-
tures, ensuring consistency in how ticket information is organized. For the
parsing of inter-ticket connections, explicit relations are established based
on predefined fields, such as those found in systems like Jira. Additionally,
implicit connections are inferred by analyzing textual and semantic similar-
ities between ticket titles, employing embedding techniques and a threshold
mechanism. The resulting structure is well organized, but its fields are rigid
and specific for tickets, making this approach hardly generalizable to other
types of documents.

A focus on the generalizability of the approach to more generic initial
structures is provided by Y. Wang et al. in their paper KGP[75], which
defines a pipeline that, like ours, begins instead with generic unstructured
documents. Similar to our approach, their KB is structured as a graph where
nodes represent records, text passages, or tables, albeit without subchapter
divisions. However, their organization differs significantly. In KGP, docu-
ments are not interconnected, but linked solely to their respective chunks
and tables. What binds the whole graph together are passage nodes, which
are linked together, even if belonging to different documents, via edges de-
noting their lexical or semantic similarity. For lexical similarity, they utilize
Term Frequency-Inverse Document Frequency (TF-IDF) and TAGME[78] to
extract keywords and Wikipedia entities, connecting two passages if they
share any common element. For semantic similarity, they embed chunks and
connect those with close vectors. Our approach could improve upon this
method by preserving the document structure more effectively through the
use of subchapter nodes. Additionally, while KGP extracts Wikipedia enti-
ties, it does not incorporate them as nodes. Not only we do that, but our
approach, though less generalizable due to its focus on encyclopedic docu-

27



ments, benefits from the overlap between the concepts of pages and entities.
This allows us to build a more cohesive graph, as chunks from one docu-
ment can directly cite a second document, and documents themselves can be
directly connected through DBpedia relationships.

The final approach presented, Docs2KG[76], shares our goal of building
a structure capable of organizing unstructured documents, which represent
the vast majority of business data. However, Docs2KG places more empha-
sis on extracting multimodal information from diverse and heterogeneous
unstructured documents, such as emails, web pages, PDF files, and Excel
spreadsheets. This focus contrasts with methods previously cited like that
of Z. Xu, which primarily concentrates on a single source of information
(tickets). For purely textual documents, which is the focus of the thesis,
Docs2KG constructs the KG from two perspectives: one related to structure
and content and the other to semantics. To maintain the document’s truc-
ture, Docs2KG identifies chapters, subchapters, paragraphs, and sentences as
nodes, and links them with relations such as “has-child”, “before”, and “after”.
On the other hand, in order to preserve the semantic aspect, the method ex-
tracts entities and connects them using relationships like “same time”, “focus”,
“supported by”, and “explain”. This subdivision of information in structure,
content and semantics is very close to our methodology. Though, the limited
set of semantic relations is a significant drawback of Docs2KG, as it fails to
fully explore the document’s deeper semantic connections, potentially limit-
ing its understanding of the more complex relationships between the elements
within the document.

28



2.7 Improving Retrieval in KGQA

Retrieval
Type

Name Approach Description Focus Limitation

Dense
Passage
Retrieval

Naive RAG[3] Retrieval of chunks whose
embedding is nearest to the
query’s embedding.

Content Incomplete Doc
Structuring (2.1)

DHR[74] A document-level retriever first
identifies relevant documents,
among which relevant passages
are then retrieved by a
passage-level retriever.

Structure Incomplete Doc
Structuring (2.1)

Search
Module

CoKG[79] Traditional Search Module:
leverages the LLM to formulate
structured queries in the
appropriate language.

Entities Applied to
traditional KGs:
incomplete doc
structuring

KnowledGPT[8] PoT Prompting: generates
search language for KBs in code
format with pre-defined
functions for KB operations.

Content and
entities

Incomplete Doc
Structuring (2.1)

SubGraph
Retrieval

VRN-QA[80],
SR[81],
TransferNET[82]

First step: identification of the
topic entities. Second step:
SubGraph expansion for
relevant nodes inclusion.

Entities Applied to
traditional KGs:
incomplete doc
structuring

G-Retriever[9] Price Collecting Steiner Tree
(PCST) problem to directly
extract a subgraph that
encompasses as many relevant
nodes and edges as possible.

Entities Applied to
traditional KGs:
incomplete doc
structuring

Hybrid
Retrieval

HybridRag[83] Vector Retrieval + Search
Module (concatenation).

Content and
entities

Same weights to all
retrieval methods

Doan et al.[84] Embedding concatenation. Content and
entities

Same weights to all
retrieval methods

KGP[75],
Docs2KG[76],
customer
KG-RAG[13]

Node Retrieval + Search
Module filtering.

Content and
structure

Incomplete Doc
Structuring (2.1)

Table 2.2: Comparison of State-of-the-Art Methods for RAG retrieval

Except for Naive RAG, all the retrieval methods presented pertain to QA on KGs.

In this section, we review the literature on Knowledge Graph Question An-
swering (KGQA) and KG-based RAG to draw inspiration for the design of
our KG-based retrieval algorithm.

KGQA is a subfield of QA that focuses on the development of systems
that use a Knowledge Graph as their underlying source of knowledge. Al-

29



though some research in this area explores Semantic Parsing techniques, our
focus will be on methods grounded in IR. Regarding instead KG-based RAG
systems, the work of Y. Gao et al. [4], previously cited in this thesis, provides
a broad analysis of the methodologies and includes a dedicated discussion on
the integration of structured data. Additionally, the survey by T. Procko
et al. [85] offers a comprehensive review specifically focused on graph-based
techniques for RAG systems. Both surveys served as key references for iden-
tifying and contextualizing the papers discussed in this section.

The informational dimension that a retrieval system prioritizes is inher-
ently determined by its underlying structure. As we observed in Section 2.6,
the state of the art lacks a representation capable of incorporating all three
informational dimensions, which means that no existing retrieval method can
fully exploit them. However, we can take inspiration from state-of-the-art
approaches to understand how each informational dimension is retrieved in-
dividually and use these insights as the foundation for our hybrid retrieval
system, which will integrate them. Additionally, we can study existing hy-
brid retrieval systems to explore effective strategies for combining different
retrieval methods.

2.7.1 Node Retrieval

The most straightforward approach to retrieval in a graph database, much
like in vector databases, relies on embeddings. Specifically, the content of
all graph nodes can be embedded beforehand to identify, at each iteration,
the node most similar to the query based on embedding similarity. Once
the most relevant node is found, a common approach is that of retrieving
its neighborhood to provide contextual information. While this method is
relatively simple, it first ensures that a pertinent entity is selected in response
to the query and then provides back to the LLM all its relevant surrounding
context.

DHR [74], cited in Section 2.6, proposed for document structuring a hi-
erarchical tree structure where document titles serve as root nodes, section
titles as intermediate nodes, and chunks as leaf nodes. For retrieval, this
approach employs a two-stage retrieval process: first, a document-level re-
triever identifies relevant documents, then a passage-level retriever selects
the most relevant child passages, using embedding-based similarity at both
stages. In this way, the retriever effectively leverages the graph structure
by first identifying a relevant node, extracting its neighborhood, and then
further refining the selection of nodes within this neighborhood using the
second passage-level retriever.

Of course, there are more complex ways to pinpoint the initial nodes.

30



A slightly more advanced approach leverages NER to extract the central
entity of the user’s question and NER to link it to the corresponding node in
the KG. As in the previous method, the retrieved node’s neighborhood then
forms the context provided to the LLM for generation.

One of the studies referenced in Section 2.6, KGP [75], explores the ef-
fectiveness of such an approach. After constructing their hybrid KB, the
authors employ a TF-IDF method to identify “seeding nodes”, i.e. the most
relevant nodes for answering the user’s query. Their findings reveal that, for
most questions, the supporting facts are fully covered within the neighbors of
these seeding nodes. However, low precision indicates that many neighboring
passages are irrelevant to the query. Consequently, retrieving all neighboring
nodes indiscriminately introduces redundant information, ultimately hinder-
ing the LLM’s ability to generate accurate responses. To mitigate this issue,
the authors propose finetuning an LLM to dynamically guide traversal over
the graph, selecting only the most relevant passages based on the query and
consequently reducing context size by preserving only the most informative
nodes.

We leverage the insights from this study to refine our retrieval method
within our RAG pipeline. By integrating different node retrieval strategies
and relevance-based filtering techniques, we aim to enhance the selection pro-
cess, ensuring that only the most contextually relevant nodes are retained.
This approach optimizes the quality of retrieved information, ultimately im-
proving the accuracy and efficiency of our system.

2.7.2 Search Module

A second widely adopted approach involves using an LLM to translate user
queries formulated in natural language into structured queries expressed in
a graph query language such as Cypher. This corresponds to what we pre-
viously introduced in Section 2.4 as the “Search Module”. The simplicity
of this method, since its basic implementation requires only a single LLM
completion, has contributed to its widespread adoption in the community, as
seen in tools like LangChain and Neo4j.

An example of this approach in the literature is Chain-of-Knowledge [79],
an iterative retrieval framework proposed by X. Li et al. The method begins
by employing an LLM to generate preliminary rationales in response to a user
query, helping to identify relevant knowledge domains. In the initial step, an
Adaptive Query Generator leverages the LLM to formulate structured queries
in the appropriate language, allowing the system to interact with variously
structured knowledge sources. The retrieved information is then used to
refine both the initial and subsequent rationales, mitigating error propagation

31



throughout the reasoning process. This iterative refinement continues until
the reasoning chain converges on a final, well-supported answer.

In spite of the popularity of this approach, while trying to implement
it in our pipeline it quickly became apparent that it wasn’t well-suited for
the application on a database with our specific structure. While effective
for traditional entity-based graphs with well-defined structures, this method
struggles with a graph enriched by textual nodes and thousands of diverse
relationships. The generated queries often proved inaccurate, as the LLM
frequently hallucinated about traversable relationships, confusing them with
existing ones unrelated to the starting node. Additionally, it faced challenges
in comprehending the less rigid graph structure, such as subchapters with
numerous unique titles. It’s important to clarify that this doesn’t imply that
the method is unsuitable for Graph-RAG systems in general. In fact, when
it works, it’s the only approach capable of answering questions about the
graph’s structure, such as “How many pages are cited in this text chunk?” or
“How many chapters does this Wikipedia page have?”. However, this method
is inappropriate for the specific graph structure we are working with, and its
primary advantage is less relevant given the type of questions in our dataset.

Also KnowledGPT[8], which we cited in section 2.6 as a key inspiration for
structuring the KB, is an example of the translation of the user’s query into
applicable retrieval actions through an LLM. Though, its approach surpasses
the straightforward translation of the user query into Cypher queries, to ac-
commodate for the more complex organization. In particular, the authors
implement the Program-of-Thought prompting technique[86], which gener-
ates search language for KBs in code format with pre-defined functions for KB
operations. The first of these predefined functions is used to link the entities
mentioned in the query with the nodes of the KB. It works by first searching
in the KB for candidate entities, then gathering information about all of the
candidates (their entity description and triples information), and finally us-
ing the LLM to determine the most appropriate entity. A second function,
called by the authors “find_entity_or_value”, is designed to retrieve the cor-
responding entity or attribute value based on a query composed of an entity
and a relation. A third function, called “find_relation”, is instead designed to
retrieve the corresponding relation based on a set of two entities. Leveraging
these different possible operations, the model is able to traverse the graph,
moving in disparate ways according to the type of question. Inspired by this
work, we too have adapted the approach to better suit our specific needs.
Rather than instructing the LLM to generate Cypher queries, we instead
leverage it as a selector within a predefined set of candidate subchapters.
This modification effectively mitigates the previously mentioned issues, en-
suring more reliable retrieval and avoiding hallucinations while maintaining

32



the benefits of the introduction of a complex language model.

2.7.3 Subgraph Retrieval

A third widely adopted approach involves retrieving a subset of the origi-
nal KG, i.e., a subgraph, that is most relevant to the given question. This
method is highly flexible, encompassing techniques that range from simply
extracting a subgraph composed of nodes and edges whose embeddings are
most similar to the query to more advanced strategies that leverage Graph
Neural Networks (GNNs).

It is worth noting that this approach is not entirely distinct from others,
as Node Retrieval is often used to identify the starting points of subgraph
expansion, commonly referred to as seed nodes or topic entities [80][9]. From
these initial nodes, the subgraph can be expanded in a targeted manner.
However, in this section, we focus specifically on research that constructs
subgraphs primarily using embeddings. This choice aligns with our broader
methodology, which prioritizes the simplest possible implementation of each
retrieval technique, since the overall complexity of our system should emerge
from the intelligent combination of multiple retrieval methods rather than
from the sophistication of any single approach.

Zhang et al.[80], for example, introduce a Variational Reasoning Network
(VRN) that is divided into two modules: one for the identification of the
topic entities and one for logic reasoning over the KG. This latter component,
starts from the identified topic entity and performs a topological sort for all
entities within T hops, where T is assumed to be known by the algorithm. In
this way it identifies a subgraph Gy which contains a set of candidate answers
and uses a learned vector representation to score each path of Gy based on
their compatibility with the question, coming in this way to the final answer.
Similarly, Zhang et al.[81] propose a model that, starting from the seed nodes,
retrieves connected entities and relations from the KB by expanding the
subgraphs to include potentially relevant nodes within a certain hop distance.
This is done by leveraging the similarity of the relations’ and the question’s
embeddings.

Also TransferNET[82] computes a score for each relation to denote their
activated probabilities in terms of the current query, but then uses them to
transfer the entity scores across those activated relations. One notable thing
about TransferNET is that the model at each step attends to a different part
of the question to get the query vector. Repeating this process over several
iterations makes it possible to essentially move across relations, ultimately
leading to the target entity.

G-Retriever[9], instead, is the only cited approach that does not address

33



the problem in an iterative way, but instead tries to directly extract the
most relevant subgraph as a whole. Authors He et al. aim at constructing
a subgraph that encompasses as many relevant nodes and edges as possible,
while keeping the graph to a manageable size. They do so by formulating it
as a PCST problem[87] that balances two objectives: maximizing the prize
values associated with its nodes and minimizing the cost of its edges, where
a higher prize, in this case, is assigned to those nodes and edges that are
more relevant to the query. More specifically, the most significant k nodes
and edges are awarded prizes on a descending scale from k to 1, while all
others receive a prize value of zero.

For our subgraph retrieval approach, we draw inspiration from both
strategies. After identifying the initial seed nodes, we iteratively construct
a subgraph based on embeddings, following the methodology outlined in the
first three papers discussed in this section. However, we then introduce an
additional selection step: once a subgraph has been built for each seed node,
we compute an overall relevance measure (also embedding-based) to deter-
mine which subgraph is the most relevant as a whole.

2.7.4 Hybrid Retrieval

Not much research has been done on RAG systems that can combine effec-
tively relevance information coming from different retrieval techniques.

One of the few studies addressing this challenge is HybridRag [83], which
explores the combination of Vector-RAG and a Graph-RAG system which
employs a Search Module. However, their approach only explores the effec-
tiveness of simple context concatenation, merging the relevant information
retrieved from both methods. Their findings demonstrate that this hybrid ap-
proach outperforms both Vector-RAG and Graph-RAG individually in both
retrieval accuracy and answer generation quality.

A similar strategy is employed by tools like LangChain8, a general-
purpose framework for building LLM applications. In one of their blog posts9,
they describe how their framework facilitates KG-based RAG construction
and propose a hybrid retrieval method that concatenates the contexts re-
trieved from both Vector-RAG and Graph-RAG. Unlike Hybrid-RAG, how-
ever, their retrieval process incorporates additional mechanisms: unstruc-
tured data is retrieved not only via embedding similarity but also using
keyword-based techniques, while structured data retrieval relies on Node Re-

8langchain.com
9blog.langchain.dev/enhancing-rag-based-applications-accuracy-by-constructing-and-

leveraging-knowledge-graphs/

34

https://www.langchain.com/
https://blog.langchain.dev/enhancing-rag-based-applications-accuracy-by-constructing-and-leveraging-knowledge-graphs/
https://blog.langchain.dev/enhancing-rag-based-applications-accuracy-by-constructing-and-leveraging-knowledge-graphs/


trieval rather than a Search Module, specifically its variant that employs
NER.

These studies highlight the potential of hybrid retrieval strategies but
also expose a gap in research regarding more sophisticated techniques for
integrating multiple relevance signals beyond simple context concatenation.
Two key limitations emerge. First, these approaches typically consider only
two sources of retrieval. Introducing additional sources would significantly
increase the size of the context passed to the LLM, which could quickly
become impractically large, potentially degrading the model’s ability to gen-
erate accurate responses. Second, these methods implicitly assume that the
relevance signals from different sources contribute equally to determining the
best overall answer, an assumption that may not always hold.

A more sophisticated approach is proposed by Doan et al. [84], who de-
velop a method that integrates standard text embeddings with KG embed-
dings. Their process begins by retrieving the top-N passages using standard
embeddings. A KG is then constructed from these passages and embedded
separately. The text embeddings and their corresponding KG embeddings
are subsequently concatenated to form a hybrid embedding. The query’s
embedding is generated using the same procedure, and the final set of re-
trieved passages is determined based on their similarity to this hybrid query
embedding. This approach represents an improvement over previous meth-
ods, since the final context is not merely a concatenation of independently
retrieved chunks but rather a selection of the most relevant ones based on
both retrieval strategies. Though, it still does not fully resolve the existing
challenges. The inclusion of additional sources would still require increasingly
long embeddings, making the method impractical at scale. Furthermore, the
hybrid embeddings are constructed by combining the two sources in equal
proportions, meaning that each source retains the same level of influence over
the final selection of chunks, regardless of its actual relevance to the specific
query.

More compelling examples of hybrid retrieval can be found in the lit-
erature on Document Structuring, which we previously introduced. This
connection is unsurprising, as these studies work with KBs similar to ours,
requiring a retrieval strategy akin to the one we aim to develop.

One such example is KGP[75], which we already cited in the section
on Node Retrieval. By leveraging LLM-generated queries to filter a node’s
neighborhood, KGP effectively implements a hybrid retrieval strategy, as it
combines two distinct methods: node retrieval and search module. A similar
approach is demonstrated by Docs2KG [76]. In it, Node Retrieval is applied
to obtain an initial set of relevant nodes. These selected nodes then serve
as anchors for a subsequent subgraph retrieval process, which expands the

35



selection through Multi-Hop queries generated by an LLM.
An even more refined approach is presented in the ticketing system study

by Xu et al[13]. Instead of relying solely on embeddings, their method begins
with an LLM extracting the intent and mapped entities from the user’s query.
These extracted elements are then embedded and used for retrieval, identify-
ing the most relevant ticket based on cosine similarity. The original query is
then rephrased using an LLM, replacing the subject with the retrieved ticket
ID. Finally, the reformulated question is transformed into a Cypher query,
allowing the system to traverse the graph and reach the answer.

These studies exemplify effective hybrid retrieval, demonstrating how
multiple relevance signals can be integrated without merely concatenating
retrieved contexts or imposing a fixed balance between sources. However,
they achieve this by constructing a retrieval pipeline in which each step se-
quentially filters the chunks passed from the previous stage. None of these
approaches investigate the effectiveness of building a comprehensive rele-
vance measure that directly integrates the contributions of multiple retrieval
methods into a unified score.

2.8 Summary of Findings and Key Open Chal-
lenges

After introducing the fundamental tasks of QA and RAG, along with the
necessary tools for their implementation, Section 2.6 explored state-of-the-
art methods for representing and organizing unstructured documents, with
a particular focus on how each approach preserves specific informational di-
mensions.

We discussed KGs as a primary resource for organizing data within a
structured framework. However, structuring information within a graph is
not always effective. This is especially true when dealing with traditional
graphs that represent information using Subject-Predicate-Object triples,
where both Subject and Object are atomic entities. The authors of Knowl-
edgeGPT [8] demonstrate that a significant portion of information cannot
be effectively represented in such an atomic format. This observation moti-
vated our exploration of alternative strategies for structuring unstructured
documents, with a particular focus on preserving and explicitly encoding
information about document organization and the relationships between ref-
erenced entities.

Most of the studies addressing this problem opt for a hybrid KG approach,
where nodes are not strictly atomic entities but instead contain entire tex-

36



tual chunks. While this approach helps retain more context, many existing
methods suffer from notable limitations. For instance, approaches such as
KnowledGPT itself fail to preserve structural information about the docu-
ment’s layout, while others, like DHR, neglect entities and their relationships.
Additionally, some other methods, like that developed by Xu et al., rely on
highly specific heuristics, limiting their generalizability to diverse document
types. Among the surveyed works, Docs2KG is the approach most similar to
ours, as it constructs a KG from two perspectives: one capturing document
structure and content and the other focusing on semantic relationships. How-
ever, Docs2KG employs a limited set of semantic relations, which we identify
as a significant drawback.

If the KB does not retain all relevant information, the retrieval process
cannot utilize it effectively. Therefore, the absence of a representation in
the state of the art that preserves all informational dimensions of the origi-
nal document directly translates into a lack of retrieval methods capable of
leveraging them. In Section 2.7, we examined how each retrieval approach
prioritizes one or a few informational dimensions, a choice inherently dictated
by the underlying structure of the system. Nevertheless, we drew inspiration
from existing works to introduce three main retrieval strategies, which we
aim to integrate into our hybrid retrieval system:

1. Node Retrieval involves selecting an initial set of nodes based on
embedding similarity or NER and NEL, followed by extracting their
entire neighborhood. The goal is to retrieve a set of relevant entities
and pass them to the LLM along with their surrounding context to
enrich the understanding of those entities. KGP[75] demonstrates that,
for most queries, the necessary supporting facts are present within the
neighborhoods of the relevant nodes. However, it also highlights a
low precision issue, as many of these neighboring passages turn out
to be irrelevant to the query. These insights support our approach of
inserting this technique into a hybrid approach. In fact, while node
retrieval is effective in capturing relevant passages, combining it with
additional methods allows for a more selective process, ensuring that
only the most contextually relevant chunks are retained.

2. The Search Module involves leveraging an LLM to translate user
queries into structured queries expressed in a graph query language
such as Cypher or, more broadly, into applicable retrieval actions. This
broader variant has been a major source of inspiration for us in design-
ing a method that addresses the limitations of the first, which in our
case produced unsatisfactory results.

37



3. The Subgraph Retrieval technique involves retrieving a subset of
the original KG, i.e. a subgraph, that is most relevant to the question.
From the literature, we identified two main approaches: iterative and
non-iterative. Similarly to Node Retrieval, the iterative approach be-
gins by identifying initial nodes, known as seeding nodes. From there,
the subgraph is expanded iteratively, adding the most relevant node to
the query at each step. In contrast, the non-iterative approach aims
to directly extract the subgraph that is collectively the most relevant.
Our Subgraph Retrieval method draws inspiration from both of these
strategies. We start by identifying the initial seed nodes and then con-
struct the subgraph iteratively using embeddings. However, we further
enhance this process by introducing an additional selection step: we
calculate an overall relevance measure (also based on embeddings) and
determine which subgraph is the most relevant as a whole.

In section 2.7.4, we then explored the techniques used to integrate these
different retrieval approaches. Most research has primarily focused on a
straightforward strategy: concatenating the contexts extracted from multi-
ple retrieval methods and feeding them to the LLM. While this approach
has been shown to be more effective than using Vector-RAG or Graph-RAG
alone, it presents two significant limitations. First, it typically incorporates
only two retrieval sources: introducing additional sources would lead to a
substantial increase in the context size passed to the LLM, making it im-
practical and potentially reducing the model’s ability to generate accurate
responses. Second, these methods assume that relevance signals from differ-
ent retrieval sources contribute equally to determining the best answer, an
assumption that does not necessarily hold in all cases.

More advanced retrieval strategies often adopt a pipeline-based approach,
where multiple retrieval methods are applied in sequence. A common strat-
egy involves first performing Node Retrieval to identify a relevant subset
of the KG, followed by Subgraph Retrieval or a specialized Search Module
to further refine the results. While these approaches enhance retrieval ef-
ficiency, they fundamentally differ from our method. Existing techniques
can be considered hybrid in the sense that they leverage multiple retrieval
mechanisms, but they do not integrate different techniques to compute a
comprehensive relevance measure. Instead, they simply chain multiple re-
trieval steps together. In essence, this is similar to what Node Retrieval
already does: combining vector-based retrieval with the graph structure to
extract an entire neighborhood, without explicitly synthesizing multiple rel-
evance signals into a unified measure. Our approach, in contrast, aims to
independently extract relevance signals from different retrieval methods and

38



fuse them in a non-trivial manner to determine the most relevant passages.
In conclusion, the state of the art still lacks an approach for representing

a collection of unstructured documents in a structure that preserves all three
of its original informational dimensions: content, organization, and semantic
relationships between referenced entities. This gap directly impacts retrieval
methods, which are inevitably dictated by the underlying KB they rely on.

Furthermore, there is no hybrid retrieval method capable of integrating
relevance signals from multiple retrieval approaches into a single, comprehen-
sive relevance score. Existing methods typically concatenate the retrieved
contexts from different retrieval strategies or arrange them sequentially in
a pipeline, where each stage filters the chunks extracted by the previous
method. This means that none of these approaches have explicitly addressed
the problem of determining the relative importance of their underlying re-
trieval strategies, nor have they developed a mechanism to reflect these vary-
ing weights in a final, unified relevance score.

39



Chapter 3

Methodology

Figure 3.1: Complete Approach

In this section, we describe in detail our entire approach, represented in fig-
ure 3.1. In section 3.1 we start off by defining how we structure our initial
collection of unstructured documents into the KG. We then explain in section
3.2 how each individual retrieval method is tasked with the identification of
relevant chunks by leveraging different informational dimensions of the orig-
inal document, and how they are consequently fused together into a single,
comprehensive, relevance score.

40



3.1 Document Structuring

Figure 3.2: Example of the proposed solution for structuring a collection in
the KG

This section focuses on the first step of our entire approach: the transfor-
mation of unstructured documents into a structured representation within
our KG. As illustrated in figure 1.2 of section 1.1.1, and further exemplified
through an example in Figure 3.2, starting from an original unstructured col-
lection of encyclopedic documents, we aim at representing the information
present in the document into a more structured KB.

The objective of the new structure represented in figure 3.3 and described
hereafter is that of explicitly representing not only the content of the doc-
ument, but also its organization and the semantic relationship between the
entities mentioned in it.

41



Figure 3.3: Graph Structure

1. Entity and Page nodes. As anticipated in 2.6, a prerogative of our
approach is that of working with a collection of “encyclopedic” docu-
ments, defined as any collection in which the user’s abstraction of an
“entity” directly corresponds to the concept of a document itself. We
represent them in our KB as Entity and Page nodes.
Note that we will use the term “document” and “page” interchange-
ably, as each of our starting document is a Wikipedia page. Naturally,
since the concepts of entity and document coincide, their correspond-
ing nodes overlap too. More precisely, since our approach also allows
for the inclusion of external entities that do not have a corresponding
descriptive document within the collection, every Page node is also an
Entity node, but not all Entity nodes are a Page, as there are entities
that have been mentioned and extracted from the documents but that
do not have a descriptive document themselves.
To maintain clarity, we will use the term “Page” when referring to nodes
from a structural perspective, specifically in the context of subchapters
and the chunks they contain. Conversely, we will use the term “Entity”

42



when discussing nodes from a semantic perspective, such as their rela-
tionships with other entities or their citations within external chunks.

(a) Identification Each Entity node is uniquely identified by its uri
property, which corresponds to the name of the entity itself. Given
the overlap between entities and pages, this means that Page nodes
are likewise identified by their titles, that is the name of the entity
that the page describes.

(b) Properties Each Page node has a text property derived from its
uri property. The text property is further augmented by labelling
the entity, using in our case DBpedia’s entity type, and appending
the label to the property inside parenthesis. Since the text prop-
erty is the one that is going to be used to create the embedding of
the node, this expedient will help to better find and disambiguate
the most relevant nodes for the question. For instance, if the ques-
tion states “Who wrote [name of a poem]?”, then the addition of
the word “writer” in the embedding of an entity could facilitate
the retrieval module to better pinpoint the correct answer. While
this approach may yield marginal improvements in widely accessi-
ble knowledge domains like in this experiment, it holds particular
promise for domain-specific knowledge bases, where entities may
not have been encountered by the LLM during training.
Each Page node has an embedding property corresponding to the
embedding of the text property.

(c) Relations Entity nodes are connected together by a semantic_-
rel relations that makes explicit the relation between them. To
mimic a practical approach, only entities mentioned within the
same document will be connected together, as there would not be
a way to extract from the original collection an information that
ties two entities that are never mentioned together. To group these
relations together, we give them all the same label (semantic_-
rel) and then disambiguate them by inserting the relation’s label
into the property type. For each of this relations, a symmetric
relation with the same label is build, connecting the object to the
subject by a relations whose type property is equal to is_[text
of the original relation]_of.
Each semantic_rel relation has an embedding property corre-
sponding to the embedding of the type property.

(d) Captured Dimension Entity nodes, along with their semantic
relationship and the “cites” relation introduced later, capture from

43



the original document semantic information relative to the men-
tioned entities and the relations that connects them. As many of
the research we reviewed in section 2, this portion represent the
content of the document as a traditional KG composed of triplets
of atomic entities.

2. SubChapter nodes.

All the sub-chapters of the page are extracted and stored in a
SubChapter node.

(a) Identification Each SubChapter node is identified via an uri
property, consisting of the title of the starting page concatenated
with the titles of all the sub-chapters traversed to come to the
sub-chapter in question, joined via a hashtag (#) symbol. For
example, the uri of the chapter 2.1 will be composed of the title of
the page plus the title of the second sub-chapter plus the title of
the sub-chapter 2.1 itself, all concatenated via a hashtag symbol.

(b) Properties Each SubChapter node contains a text property that
mirrors its uri property. While this redundancy might seem inef-
ficient in terms of memory usage, it is necessary because all nodes
are embedded based on their text property.

(c) Relations Each SubChapter node is connected via the is_-
subchapter_of relation to all of their parent sub-chapters and the
parent page. Its symmetric relation has_subchapter, though, is
not transitive, meaning that it only connects a parent sub-chapter
with its direct sub-chapters children. This choice will prove useful
in later chapters, when the RAG system will be developed.
Each SubChapter node has an embedding property corresponding
to the embedding of the text property.

(d) Captured Dimension Subchapter nodes, along with their rela-
tionship, capture from the original document information relative
to the structure and organization of the textual content. This
portion enables the retrieval algorithm to move within the con-
tent of the document like a human would: relying on position and
chapter’s titles.

3. Chunk nodes.

All of the textual content of the page is extracted and divided into
chunks, each of which constitutes a Chunk node.

44



(a) Identification Each Chunk node is identified via an uri property,
consisting of the uri of its parent sub-chapter plus an ordinary
number representing the chunk’s position in the chapter. So, for
example, the uri of the second chunk of the chapter 2.1 will be
composed of: the title of the parent page, the title of the second
sub-chapter, the title of the sub-chapter 2.1 itself and the number
two, all concatenated with a hashtag symbol.

(b) Properties Each Chunk node has a text property consisting of
the textual content of the chunk itself.

(c) Relations Each Chunk node is connected back to all of its parent
sub-chapters and the parent page via the relation is_chunk_of.
Similarly to the has_subchapter relation, though, the symmetric
relationship has_chunk is not transitive, this means that it only
connects a sub-chapter with its direct chunk children.
Each Chunk node also has a next relation that connects it with
the subsequent chunk of the same subchapter, and a symmetric
previous relation that links it with the previous one.
Finally, each Chunk node is linked to every Entity node it refer-
ences through a cites relationship. Conversely, the symmetric
cited-in relationship connects each Entity node to the Chunk
nodes in which it is mentioned.
Each Chunk node has an embedding property corresponding to
the embedding of the text property.

(d) Captured Dimension Chunk nodes are designed solely to cap-
ture the content of the original document. This portion of the
knowledge graph represents its core structure: the equivalent of
what any standard vector database would contain.

45



3.2 Retrieval

Figure 3.4: Example of the proposed solution for chunks retrieval

In this section we describe our methodology for addressing our second re-
search question: how to design a retrieval component that leverages not only
the content of a document but also the enriched information incorporated
into our KB.

In section 3.2 we begin by presenting the various individual retrieval ap-
proaches employed in our approach one by one. In section 3.2.2, we then de-
scribe our strategy for integrating the relevance signals obtained from these
methods into a final global decision. Rather than assigning equal weights to

46



each source, we develop our strategy by focusing on merging the different
approaches in a way that reflects the actual importance of each signal in
identifying the most relevant passages.

The intuition behind our approach is illustrated in Figure 3.4. This figure
builds on the same questions presented in Figure 1.3 (Section 1.1.2), which
we used to highlight how retrieval methods that rely on a single informational
dimension inevitably fail to retrieve the most relevant chunks. In contrast, we
aim to demonstrate that, by integrating multiple informational dimensions
to identify the overall best chunks, our approach can achieve better results
in most types of questions.

For each question, each retrieval method is tasked with identifying the
most relevant chunks based on its preferred informational dimension. Addi-
tionally, each method is required to assign a relevance score to each chunk
according to its specific dimension. By combining these individual scores,
our approach constructs an overall relevance score, allowing it to determine
the most suitable chunks across all dimensions. This ensures a more compre-
hensive and effective retrieval process, overcoming the limitations of single-
dimensional approaches.

47



3.2.1 Retrieval Approaches

Name Question
Addressed

N. of
retrieved
nodes

Chunks Retrieved Score

Vector
Retrieval

How relevant is the
chunk’s content?

10 Chunk
nodes

Retrieves chunk directly. Cosine similarity
between the chunk
and the query.

Page
Retrieval

How relevant is the
document to which
the chunk belongs?

3 Page nodes Retrieves all the chunks
of the relevant pages.

Cosine similarity
between the parent
page’s title and the
query.

Section
Retrieval

How relevant is the
section to which
the chunk belongs?

5 SubChapter
or Page nodes

Retrieves all the chunk of
relevant sections.

Cosine similarity
between the parent
section’s title and
the query.

Entity
Retrieval

How relevant are
the entities that
the chunk cites?

5 Entity nodes Retrieves all the chunks
that cite one of the
retrieved entities.

Max cosine
similarity between
the cited entity’s
name and the query.

Path
Retrieval

Is the chunk linked
to the relevant KG
path?

1 KG-path Retrieves all the chunks
relevant to the extracted
path.

Binary: 1 to all
chunks retrieved, 0
otherwise.

Table 3.1: Summary table of the retrieval methods employed.

In this section we describe each individual retrieval method focusing on the
different aspects of the KG they focus on to assign their relevance scores. We
summarize this information in table 3.1.

Vector-based Retrieval with Embeddings

How relevant is the chunk’s content?

The most common and easy way to set up a RAG system is by imple-
menting a vector-based retrieval with embeddings. The same model used to
embed the text property of the nodes of the KG is used to embed the user’s
query. The resulting query-vector is then compared to the vectors of all the
Chunk nodes via cosine similarity, i.e. the cosine of the angle formed by the

48



two vectors. This measure determines whether two vectors are pointing in
roughly the same direction and is computed as follows:

Cosine Similarity = cos(θ) =
A ·B

∥A∥∥B∥
=

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

Finally, the top k chunks with highest cosine similarity are retrieved.

The Vector-based retrieval is only applied to chunk nodes and therefore
provides relevance information only from the perspective of the content of
each paragraph.

This methods retrieves the top 10 relevant chunks, and assign them a
score equal to their cosine similarity with the query’s embedding.

Page Retrieval

How relevant is the document to which the chunk belongs?

As presented in detail in section 2.7.1, Node Retrieval consists in the
retrieval of the whole neighborhood of a set of relevant nodes. This stems
from the assumption that the neighbor of a relevant node will be relevant
as well, as it provides additional context into the node itself. Page Retrieval
consists in identifying the three most relevant Page nodes through cosine
similarity, confronting the query with the text property of each page node.
Then, is_chunk_of relations are harnessed to retrieve all text chunks that
belong to that page.

This methods assigns to each retrieved chunk a score equal to the cosine
similarity between the query and the parent page’s title.

This approach leverages the organization of the text into documents to
identify the most relevant chunks.

Section Retrieval

How relevant is the section to which the chunk belongs?

Section Retrieval is a second Node Retrieval approach that operates sim-
ilarly to Page Retrieval. However, instead of focusing solely on the most
relevant page, this method also considers SubChapter nodes. Additionally,
rather than extracting all chunks connected directly or indirectly (through
the transitive is_chunk_of relation), it only retrieves those directly linked

49



to the identified nodes (through the non-transitive has_chunk relation). In
other words, this retrieval method has a narrower focus, as it favors the
retrieval of chapters and sections rather than entire pages.

This methods retrieves the top 5 subchapter and page nodes, and assigns
to each connected chunk a score equal to the cosine similarity between the
query and the parent chapter.

This approach completes the previous one by leveraging yet again the
organization of the text, this time into sections, to identify the most relevant
chunks.

Entity Retrieval

How relevant are the entities that the chunk cites?

Entity Retrieval is yet another Node Retrieval method that extracts the
top 5 Entity nodes whose embeddings are most similar to the query. It then
considers all Chunk nodes that reference these entities, leveraging the cites
relationships present in the graph.

This method assigns to each retrieved chunk a score equal to the cosine
similarity between the query and the cited entity’s text property. If one
chunk cites more than one relevant entity, only the highest relevance score is
retained.

This approach shifts focus to semantic metadata, particularly emphasiz-
ing entities and the chunks that reference them.

50



Path Retrieval

Is the chunk linked to the relevant KG path?

Figure 3.5: Path Retrieval

As mentioned in 2.7.2, the employment of an LLM to translate natu-
ral language queries into Cypher queries did not yield satisfactory results
due to the specific structure of our KB. However, drawing inspiration from
KnowledGPT[8], we adapted this approach to better suit our specific needs.

The path si retrieved thanks to the employment of a “Graph Traverser”,
which works by employing an LLM to select, out of a list of possibly rele-
vant paths, the one that is most relevant to the question. In particular the
traverser is able to select from a list coming from two types of relations:
the has_subchapter relations, selected by the “SubChapter Finder”, and the
semantic_rel relations, selected by a “SubGraph Retriever”.

The employment of a SubGraph Retriever, as those reviewed in section
2.7.3, can introduce additional relevance signals into the model by incorpo-
rating entities and the semantic relationships that connect them. Further-
more, the traversal-based approach employed in this method offers a dis-

51



tinct perspective that can be particularly valuable when handling Multi-Hop
questions. In fact, up to this point, we have primarily focused on retrieval
methods that aim to directly pinpoint the correct answer or its immediate
context. In contrast, subgraph retrieval is the only approach that actively
leverages relationships and navigates through them to locate the answer.

Hereafter is provided the entire approach of the Graph Traverser, also
represented in 3.5:

1. Query Embedding
The user’s query is embedded.

2. SubChapter Finder

(a) Page Retrieval
The three most relevant Page nodes are identified based on cosine
similarity.

(b) Subchapter Extraction
All the subchapters of the retrieved pages are extracted.

(c) Formatted Text Construction
The chapters are organized into a properly formatted text suitable
for the next stage of LLM injection:

1.Title of page 1
#Title_subchapter1
#Title_subchapter1#Title_subchapter1 .1
#Title_subchapter1#Title_subchapter1 .2
#Title_subchapter2
ecc.
2.Title of page 2
ecc.

Listing 3.1: SubChapter formatting for SubChapter Finder

3. Subgraph Retrieval

(a) Entity retrieval
The three most relevant Entity nodes are identified. They serve
as the foundation for subgraph construction.

(b) Iterative expansion
From these starting nodes, the algorithm expands outward by ex-
ploring their neighborhoods and iteratively retrieving the most
relevant connected nodes. At each iteration, the selection of the
next node is guided by a comparison embedding, computed as the
average of the node’s own embedding and the embeddings of all
relationships traversed to reach it from the seed node. The node

52



within the current neighborhood whose comparison embedding
has the highest cosine similarity to the query embedding is added
to the subgraph. Once a new node is incorporated, the considered
neighborhood expands to include all of its neighbors as well. This
iterative process continues until the subgraph reaches a predefined
size (5).

(c) Global selection
Each subgraph is assigned an overall relevance score by averaging
the individual scores accumulated during its expansion. The sub-
graph with the highest score is in this way selected as the final
result.

(d) Formatted text construction
The relations are organized into a properly formatted text suitable
for the next stage of LLM injection:

NodeA#rel_type:NodeB
NodeA#rel_type:NodeC
NodeB#rel_type:NodeD

4. Context concatenation
The output of the SubChapter Finder and the SubGraph Retriever are
concatenated.

5. LLM selection
The LLM is prompted with the following System Prompt:

You are going to be provided with a context consisting of
multiple Wikipedia pages , along with all of their
chapters and supchapters.

If existent , return the name of the page + the name of the
chapter or subchapter in which the answer to the user

’s question can be found.
If the question is about something generic of the topic of

the page , return the title of the page.
If the question is specific and none of the pages ’

chapters and subchapters fits it precisely , return ’ND
’.

If the answer could be found in multiple pages or
subchapters , or you are undecided between multiple
options , respond with a list of ALL the identifiers of
the relevant pages or subchapters , separated via a

semicolon.
If the question needed multiple subchapters to be answered

, respond with a list of ALL the identifiers of the
subchapters used to answer the question , separated via
a semicolon.

In any case , return the answer without providing any
comments.

53



Listing 3.2: System Prompt for Graph Traverser

6. Chunk Retrieval
Now that we have identified the most relevant subchapter or graph path
we want to use this information to retrieve the most relevant chunks.
If the LLM selects a subchapter, then all chunks directly belonging to
that chapter are added to the relevant chunk list. Instead, if the LLM
selects a KG-path, all nodes involved in that path are extracted. If
a chunk that cites all of the nodes in the path exists, it is extracted
as the main relevant chunk. Otherwise, if at least one of the nodes is
a Page node and a chunk within that page citing all the other nodes
exists, that chunk is selected. If this condition is not met and more
than two nodes are involved in the path, all chunks citing at least two
of them are included. In cases where none of the above criteria apply,
any chunk that cites at least one of the nodes is added to the list.

The method assigns a score of 1 to all the Chunk nodes retrieved, and a
score of 0 otherwise.

This method is dual-faceted: its SubChapter Finder component focuses
on the structural organization of the original document, while its SubGraph
Retrieval component emphasizes the semantic dimension, leveraging entities
and the relationships that interconnect them.

3.2.2 Hybrid Retrieval

Figure 3.6: Hybrid Retrieval

Although, as we’ll see in section 4, none of the retrieval methods individu-
ally outperforms traditional document retrieval, each one of them leverages

54



different aspects of the graph to capture distinct facets of the answer. Draw-
ing inspiration from ensemble learning, this section defines an approach that
integrates these various relevance scores into a single, unified relevance mea-
sure, ensuring that their complementary strengths are leveraged to minimize
errors and enhance accuracy. The main focus is to build this hybrid retrieval
so that it weights the starting relevance scores proportionally to the actual
importance that each initial method has in identifying the most relevant
passages.

We model our hybrid retriever as a Feed Forward Neural Network
(FFNN). The network gets in input, for a specific Chunk node c, its relevance
scores for all of the native retrieval approaches ([cv, cpage, cparent, centity, cpr]).
The FFNN is trained to classify the node c into two classes: relevant (1)
or not relevant (0). This means that, during inference, the output of the
network σ(f(c)) for each node c is equal to the probability of that node to
be relevant: σ(f(c)) = P (crelevant = 1|c).

The FFNN consists of three fully connected hidden layers, each followed
by batch normalization and dropout regularization to enhance generalization
and prevent overfitting. Specifically, the architecture is structured as follows:

• Input layer: Receives the five-dimensional feature vector corresponding
to the chunk’s retrieval scores.

• Hidden layers:

– First hidden layer: 254 neurons, ReLU activation, L2 regular-
ization (λ = 0.01), followed by batch normalization and a 20%
dropout rate.

– Second hidden layer: 128 neurons, ReLU activation, L2 regular-
ization (λ = 0.01), batch normalization, and a 30% dropout rate.

– Third hidden layer: 64 neurons, ReLU activation, L2 regulariza-
tion (λ = 0.01), batch normalization, and a 40% dropout rate.

• Output layer: A single neuron with a sigmoid activation function, pro-
ducing a probability score indicating the relevance of the chunk.

The network is trained using the Adam optimizer with a learning rate of
0.001 and binary cross-entropy as the loss function. To improve convergence
and prevent overfitting, we incorporate early stopping (with patience set to
10 epochs) and learning rate reduction on plateau (reducing the learning
rate by a factor of 0.2 after 5 epochs without improvement, with a minimum
learning rate of 0.0001). The model is trained for up to 100 epochs with a
batch size of 64.

55



While the actual architecture of the network is relatively straightforward,
the overall approach must incorporate some level of ingenuity to address
three main design challenges that arise when shaping a tool of this kind.
The effectiveness of the solutions described hereafter will be demonstrated
in section 4.5.2.

Local Standardization

The first challenge arises from the nature of the task itself. Instead of a
straightforward classification problem that determines whether each chunk
is relevant or not, the objective is to select the top-k most relevant chunks
from the subset Crelevant, which consists of all chunks identified as relevant by
at least one method. The output of the neural network remains a probability
(ranging from 0 to 1) indicating the likelihood that a given chunk contains
the answer to the user’s query. However, this probability is not computed in
isolation; rather, it is derived by comparing the relevance scores of individual
chunks within the same subset, rather than against all extracted chunks
across the entire dataset of queries.

Before training a neural network, normalization is commonly applied to
the dataset to enhance model convergence and stability by ensuring that in-
put features are on a comparable scale. In our case, it would be beneficial
to standardize the continuous relevance scores produced by each individual
retrieval method. However, if we would apply global standardization, i.e.
scaling each continuous variable relative to all observations in the dataset,
the model would inherently compare each instance to the entire dataset rather
than to its specific group. In this context, if an observation receives the high-
est relevance scores within its question-specific set, but relatively low scores
compared to the overall average across all questions, global standardization
would significantly lower these values. Feeding these reduced scores into the
model could result in the misclassification of the observation as non-relevant.

To mitigate this issue, we propose standardizing the continuous variables
of each observation using only the values within its respective group. This
adjustment ensures that the model implicitly compares each observation to
others within the same set. As a result, the observations that retain the
highest values when passed to the model are not necessarily those that rank
highest across the entire dataset but rather those that stand out within their
specific group.

To achieve this, instead of computing the mean and variance of the rel-
evance scores for each retrieval method across all chunks in the dataset and
using these values to standardize the relevance scores globally, we adopt a
localized approach. Specifically, for each question in our QA dataset, we con-

56



sider the set of chunks retrieved by at least one retrieval method, denoted as
Crelevant. Within this set, we compute the mean and variance of the relevance
scores for each retrieval method using only the chunks in the group. These
values are then used to standardize the relevance scores within the group
itself, ensuring that the scaling is performed relative to the specific query
context rather than the entire dataset.

Handling Missing Values

A second challenge arises from the inevitable sparsity of the dataset on which
we want to train our model. Since Crelevant represents the subset of chunks
retrieved by at least one retrieval method, most observations within it will
have several missing scores, as they were selected by only one or a few of
these methods. It is therefore necessary to determine how to assign values
to these unobserved variables.

Since the cosine similarities of retrieved chunks in the train set typi-
cally fall within a narrow range (0.85–0.90), replacing this null values with
0 (before standardization) would have resulted in non-retrieved observations
receiving extremely low standardized values, while the retrieved ones would
have been confined to a very small and distant range. Since these observa-
tions were retrieved by at least one method, they are inherently relevant to
the question. Even if they were not in the top n retrieved chunks for that
specific retrieval approach, it is still implausible that they would have had
a relevance score of 0. Instead, it is much more likely that they would have
received a relatively high cosine similarity, albeit lower than the set’s actual
minimum for that retrieval method. Rather then assigning a score of 0, rep-
resenting a total insignificance of the observation to that specific retrieval
approach, it is much more reasonable to assign an arbitrarily high, but still
lower than every other observation, relevance value. Since the overall lowest
score was of 0.81, we opted for replacing every missing value with a standard
relevance score of 0.75, included before standardization.

Active Sampling

One aspect of the hybrid retrieval training method that we found concern-
ing was the subsampling phase. A traditional subsampling method involves
retaining all observations from the minority class (in our case, crelevant = 1)
and randomly sampling an equal number of observations from the majority
class (crelevant = 0). However, purely random sampling does not guarantee
the quality of the latter class of observations. For each question, a signif-
icant portion of the chunks listed in the dataset may have been identified

57



as relevant by only one method. A chunk is more likely to be genuinely
relevant if multiple methods have flagged it as such. This implies that, for
any given question, many chunks labeled as crelevant = 0 will be “clearly”
irrelevant, providing little challenge for the model during training. Random
sampling increases the likelihood of including these “easy negatives”, which
do not contribute meaningfully to the learning process.

A more effective sampling strategy might involve identifying “ambiguous”
observations, i.e. those chunks detected as relevant by multiple methods, and
using these to train the model. By doing so, we would train the network on
more complex data, with the expectation that the model would learn deeper
patterns. The hope is that a model trained to correctly distinguish more
intricate data will also perform well on simpler observations. The strategy
of training a model with harder examples is called curriculum learning [88],
a technique where models are first trained on simpler examples before grad-
ually being exposed to more complex and ambiguous cases, improving their
generalization ability.

One approach to identify more complex examples is to leverage the scores
produced by a second neural network, pre-trained on data sampled using tra-
ditional methods. This technique is formally known as hard-negative mining,
where hard negatives refer in this case to observations that, despite being
truly negative, were mistakenly assigned a high probability of belonging to
the positive class by the first neural network. By incorporating these chal-
lenging examples into the training process, the model is encouraged to learn
more complex reasoning paths, ultimately improving its ability to distin-
guish between relevant and non-relevant chunks. Therefore, we propose the
following training pipeline:

1. Apply traditional sampling.

2. Train a first FFNN on the sampled data.

3. Utilize the network to assign to each chunk a probability of belonging
to the positive class.

4. From the original dataset, refine the Crelevant set of each question by
eliminating the negative observations that fall within the lowest 90%
probability scores. This ensures that only the most promising candi-
dates are retained for further analysis, thereby enhancing the overall
quality and relevance of the dataset.

5. Apply traditional sampling on the refined dataset.

6. Train a second FFNN on the more complex dataset.

58



Chapter 4

Experiments

Now that we have established the methodology for addressing the objectives
of this thesis, the next step is to define the dataset that will be used to
conduct the experiments and evaluate our approach.

4.1 Dataset
Our approach is tested on two different QA datasets: a 20% portion of the
development set of NQ, designed for single-hop questions, and a synthetically
generated multi-hop dataset composed of 100 questions. In particular, we use
the Wikipedia pages referenced in the dev set of NQ the build our KG by
developing a “Wikipedia Parser”. The synthetic multi-hop dataset is then
generated from this same KG.

4.1.1 Natural Questions Dataset

For this experiment, we use the development set of Google’s Natural Ques-
tions dataset (NQ)[22] (hereafter referred to as NQ-dev) to train and evalu-
ate our Hybrid Retrieval system. The NQ-dev set consists of approximately
8,000 observations, each associated with a relevant Wikipedia page. All of
these 8,000 pages are used to construct our KG, which serves as the retrieval
source during both training and testing, for both single-hop and multi-hop
queries. Instead, for what regards the questions, 5,223 of them actually have
an annotated answer that we were able to trace back in our KB. These 5,223
questions are split into a training and testing set to ensure an unbiased eval-
uation. Specifically, 80% of the questions in NQ-dev (NQ-dev-80%) are used
to train the Hybrid Retrieval system, while the remaining 20% (NQ-dev-20%)
are exclusively reserved for testing, resulting in 4,179 training questions and

59



1,044 testing questions.
Google’s NQ was selected as the benchmark for the question-answering

task due to several key advantages.
First of all, NQ leverages Wikipedia as its knowledge source, with an-

swers appearing as text spans within Wikipedia pages. As we anticipated in
1.1.1, we select Wikipedia because it greatly simplifies the implementation
of the experiment. Wikipedia inherently follows an encyclopedic structure,
where each page is dedicated to a single topic, and every topic is clearly de-
fined by its corresponding page. Additionally, references to other pages are
explicitly marked with hyperlinks, making them easy to parse. While our
approach is generalizable to any knowledge source with a similar structure,
applying it to plain text would require prior processing steps such as NER,
NEL, and Coreference Resolution. Since Wikipedia already highlights and
links entities, we can bypass this preprocessing phase and focus directly on
developing the KB structure and retrieval system. The same advantage ap-
plies to relationships between entities: thanks to parallel knowledge sources
like DBpedia, we can retrieve the type of connection between two entities
without relying on Relation Extraction models.

Secondly, to limit the size of the dataset to a manageable size, we need
to define a subset of Wikipedia pages to form our initial unstructured KB.
Since each question in the dataset specifies the Wikipedia page from which
the answer is derived, we can efficiently create a subsample and restrict our
database to only relevant pages (the dev set).

Finally, it is a high-quality, widely-used dataset, which has been exten-
sively utilized in the literature on QA systems, underscoring its credibility
and reliability. Furthermore, its questions come from real user interactions
and therefore provide an evaluation on data resembling production environ-
ments.

60



Knowledge Base Construction

Figure 4.1: Wikipedia Parser

To transform the collection of unstructured documents (NQ-dev) into the or-
ganized Knowledge structure we defined in 3.1 we create a custom Wikipedia
Parser, whose working is exemplified in figure 4.1. The parser is designed to
work directly with the Wikipedia pages provided in the dataset, although a
version that uses the provided title to download the corresponding Wikipedia
page through its API1 also exists. The first approach is preferred to avoid
delays associated with live page downloads and to ensure consistency with
the dataset’s original version of Wikipedia pages.

The resulting HTML of each page is then parsed using BeautifulSoup2.
First of all, the title of the pages is extracted to create the corresponding
Page node. Then, all subchapters are extracted to create the corresponding
SubChapter nodes, and are linked to the parent page. For each subchapter,
its content is extracted and divided into chunks leveraging Wikipedia’s double
new-line formatting. Each of these chunks constitutes a Chunk node, which
is connected back to the parent subchapter, the parent page and to the
adjacent chunks. The chunk parsing mechanism is enhanced to include a
broader range of HTML elements beyond just paragraphs, such as tables
and lists. This refinement is critical, as a significant portion of the answers
in the NQ dataset are located in these elements, and failing to include them
would adversely impact the results. For each chunk, the parser extracts all
the referenced pages through Wikipedia’s hyperlinks. If the extracted page is

1www.mediawiki.org/wiki/API
2crummy.com/software/BeautifulSoup/bs4/doc/

61

https://www.mediawiki.org/wiki/API
https://www.crummy.com/software/BeautifulSoup/bs4/doc/


not already in the KB, then an Entity node is created with its title and linked
to the chunk with the “cites” relation. If the extracted page is already in the
KB, then it is identified and linked to the chunk with the same relation.

After this first parsing of the entire collection, the parser identifies, for
each extracted entity, the corresponding DBpedia entity thanks to the “is-
PrimaryTopicOf” property. It then proceeds to transfer to the graph all the
relations that connect two entities that are cited in the same page. These
relations are all stored in the new database with the type semantic_rel and
hold the original type in the property type.

For each question, in addition to the page in which the answer is stored,
the NQ dataset stores the answer as a text span of the page itself. Each
annotator is asked to outline a “long answer” (i.e. a whole chunk of the page)
and, when possible, a “short answer” (i.e. the shortest possible span of text).
Preserving this information is crucial for the evaluation of the retrieval sys-
tems. To do so, a new function is implemented into the parser to extract
textual answers based on the spans provided in the “long answer” annota-
tions, identify all chunk nodes linked to the corresponding Wikipedia page,
and search within each chunk for potential matches. Matched chunks are
annotated with an is_answer_of property that is set equal to the respective
question. Notably, as some questions have multiple valid answers, all chunks
containing these answers are appropriately identified and annotated.

The graph thus created consists of:

• 600,411 nodes, including:

– 165,803 nodes of type :Chunk

– 366,660 nodes of type :Entity

– 4,897 nodes of type :Page

– 63,051 nodes of type :SubChapter

• 2,329,701 relationships, including:

– 1,009,327 relationships of type [:cited_in]/[:cites]

– 420,505 relationships of type [:has_chunk]/[:is_chunk_of]

– 63,051 relationships of type [:has_subchapter]/[:is_-
subchapter_of]

– 103,538 relationships of type [:next]/[:previous]

– 733,280 relationships of type [:vector_rel]

62



The construction of the KG for the 5,223 questions in NQ-dev that actu-
ally contained an answer was completed in 36 minutes. The first 20 minutes
were dedicated to parsing the Wikipedia pages, which involved decompos-
ing them into their fundamental components (entities, subchapters, and text
chunks), extracting all relevant relations, and storing this information in sep-
arate CSV files. Next, 12 minutes were required to filter the DBpedia dumps,
extracting only the relations relevant to the construction of our KG. This
process included mapping Wikipedia pages to their corresponding DBpedia
entities via the “isPrimaryTopicOf” relation and leveraging this mapping to
retrieve DBpedia labels and relations connecting extracted entities. Finally,
the bulk import into Neo4j took the remaining 4 minutes. This last step also
included additional operations, such as assigning the “Page” label to entities
associated with chunks and subchapters, and removing relations between
entities that did not co-occur within the same document.

Now that the database is constructed, the next step involves creating em-
beddings for all nodes in the graph. To achieve this, OpenAI’s ada-v2[44] em-
bedding model is employed through Azure’s OpenAI API. The process of em-
bedding initialization and indexing is carried out using the langchain_com-
munity library3, specifically the Neo4jVector class and its from_existing_-
graph() method. This function connects to the Neo4j instance, constructs
an index if one is not already present, retrieves up to 1,000 nodes lacking em-
beddings, and passes their text property to the embedding method. Despite
reasonable execution speeds, this resulted in the process often triggering rate
limit error. To mitigate this issue, the graph indexing process was divided
into distinct steps for nodes and relationships.

Entity and SubChapter nodes contain short token sequences, such as page
titles or subchapter headings. Therefore, the rate limit is triggered because
the algorithm reaches the limit of 1,400 requests-per-minute. The from_-
existing_graph() function is modified to address this limitation. First, the
graph query limit is increased from 1,000 to 1,200 nodes, leaving 200 requests
as a buffer. Then, the exact time of embedding completion is recorded, and
subsequent requests are delayed until at least one minute has elapsed since
the previous batch. This approach required approximately 426 minutes for
Entity nodes indexing and 73 minutes for SubChapter nodes indexing.

For Chunk nodes, since they represent larger text sequences, the token-
per-minute limit (240,000) is the primary bottleneck. To resolve this, the
function is further adapted. After retrieving 1,200 nodes, a subset is selected
based on cumulative token count, with a safety buffer of 20,000 tokens. The

3pypi.org/project/langchain-community/

63

https://pypi.org/project/langchain-community/


number of tokens per node is calculated using the tiktoken4 library with
the o200k_base encoding. Nodes exceeding the token limit are deferred to
subsequent iterations, ensuring complete indexing across multiple batches.
This step required 203 minutes to complete.

Lastly, DBpedia relationships are also embedded. This step is carried
on with relative ease, since only 7,668 unique relationship types are present.
The embedding process involves iterating over each type, indexing its textual
representation, and applying the resulting embedding to all relationships of
that type. This process took 43 minutes. While parallelizing requests could
have improved efficiency, the relatively small number of relationships did not
justify further optimization.

All the embeddings are then stored in the respective property “embed-
ding”. Finally, vector indices were constructed in Neo4j.

4.1.2 Synthetic Multi-Hop Dataset

Google’s NQ dataset is great because its questions come from real user inter-
actions and therefore provide an evaluation on data resembling production
environments. Though, each query is precise and its answer can be found
inside a single chunk. Even for the question where the annotators selected
multiple chunks as answers, in fact, only one of them is needed to answer the
question. The multitude of responses is often not related to the actual need
for each chunk of being retrieved, rather to the fact that multiple passages of
the pages repeat the same information. In QA systems, though, the ability
to answer natural language questions that involve extracting and combining
multiple pieces of information is crucial, and is extensively studied in the
field of Multi-Hop QA.

To test the accuracy of the RAG system also on this type of question, a
synthetic Multi-Hop dataset (NQ-MH-100) is built from the KG.

First, a random set of 300 observations is collected from Entity nodes that
are cited in at least two Chunk nodes. In this way, each observation contains
an entity node and a set of at least two chunk nodes. Each observation is
then passed to an LLM (GPT 4o) to which it is asked to write a Multi-Hop
question that needs at least two of the chunks to be answered. Moreover,
the LLM is asked to provide the answer to the question itself and the chunks
that need to be retrieved to answer the question. The complete prompt is
reported below:

Imagine being a system made for building test sets.
You are going to be given two or more chunks of text , and an entity

recurring in each of these chunks.

4github.com/openai/tiktoken

64

https://github.com/openai/tiktoken


Write a Multi -Hop question that needs at least two of the chunks to be
answered AND its answer. Provide also the name of the chunks from
which the question has been formulated.

The provided entity shouldn ’t either be the subject of the question nor
the answer , but should be a piece needed to answer the question.

If no straightforward question can be extracted from the chunks , answer
with ‘‘ND ’’.

Here are some examples:

INPUT:
- chunk1: ‘‘The flag of [NATION] is [COLORS of FLAG ]."
- chunk2: "[ NATION] won the [SOCCER TOURNAMENT ]."
- entity: [NATION]
OUTPUT:
Question: What color is the flag of the nation who won the [SOCCER

TOURNAMENT ]?
Answer: The flag of the nation that won the [SOCCER TORUNAMENT], [NATION

], is [COLORS of FLAG].
Chunk used: chunk1 , chunk2

INPUT:
- chunk1: "[ PERSON1] is the sister of [PERSON2 ]"
- chunk2: "[ PERSON2] is from [NATION ]"
- chunk3: "[ PERSON2] is the lead singer of [BAND]"
- entity: [PERSON2]
OUTPUT:
Question: Who is the sister of the lead singer of [BAND]?
Answer: The sister of the lead singer of [BAND], [PERSON2], is [PERSON1

].
Chunk used: chunk1 , chunk3

The question should not simply ask about information of the entity in
the first and second chunk , but should ask for a link between them.

Here are some example of a good and bad question:
INPUT:
- chunk1: ‘‘In 1996 [ACTOR] performs in [FILM ]."
- chunk2: "[FILM] talks about [TOPIC ]."
- entity: [FILM]
BAD question: Who performed in [FILM] and what is [FILM] about?
GOOD question: What is the film [ACTOR] starred in 1996 about?

INPUT:
- chunk1: "[ PERSON1] invented [INVENTION ]."
- chunk2: "[ PERSON1] suffered of [ILLNESS ]."
- entity: [PERSON1]
BAD question: What did [PERSON1] invent and what illness was he

suffering from?
GOOD question: What disease did the inventor of [INVENTION] suffer from?

You should make sure that the question has only one straightforward
answer.

Here are some examples.
BAD question: Who is the actor who played Jack in one of the most

influential movies of the 90’s?
There could be more than one actor that played the role of a character

named Jack in an influential movie of the 90’s.
GOOD question: Who is the actor who played Jack in the movie that came

out on February 11th 1996?
Making sure there is only ONE character named Jack in the movies that

came out on that date.

If no GOOD question can be extracted from the context , answer with ‘‘ND

65



’’.

Listing 4.1: Synthetic Multi-Hop Dataset System Prompt

Then, the context is provided to the model in the Human Message in
the same way as exemplified in the examples of the system prompt. Finally,
the generated output is parsed to extract the question, the answer, and the
chunks used to formulate the question.

In the second phase, after removing all observations that generated a
response equal to ND, all the outputs of the model are passed again into
the LLM with a different prompt. In it, the model is asked to act as an
evaluator that gives each observation a score based on the quality of the
question-answer pair. The complete prompt is reported below:

Imagine being an evaluator.
You are going to be given a question -answer pair of a synthetic multihop

question answering dataset.
Give a complexive score from 1 to 10 to the observation.
The score should be lower if:
- It is not a Multi -Hop question: the questions asks something about an

entity that is directly and explicitly mentioned in the questioned
itself.

- The question is excessively convoluted.
- There could be more than one answer to the question.
- There may be ambiguity in identifying the entities the question is

referring to.
- The question asks multiple different things.

Write a VERY BRIEF evaluation of the observation based on this question.
Based on this evalation , write ‘‘FINAL SCORE: " and assign the score to

the observation.

Listing 4.2: Evaluator System Prompt

The observation is then passed to the model, and the generated answer
is parsed to extract the score.

In the last step of the process, the observations are ordered by their score
and are manually evaluated by a human which deletes the unsuitable ones.
The human evaluation continues till a total of 100 suitable question-answer
pairs is reached. This set, consisting of question, answers and the uris of
the Chunk nodes needed to answer the question, composes the Multi-Hop
evaluation dataset.

It is important to note that this Multi-Hop dataset is used exclusively
during the testing phase. This means that the neural network is evaluated
on Multi-Hop questions despite being trained solely on the non-Multi-Hop
dataset. This experimental setup allows us to assess the model’s ability to
generalize to more complex, Multi-Hop queries without any prior exposure
to them during training.

66



4.2 Baselines
To evaluate the performance of our Hybrid Retrieval method, we compare
it against each of the individual retrieval techniques that contribute to its
construction. Among these, our primary baseline is the Vector Retrieval, as
it is the most commonly used retrieval method in QA and RAG systems due
to its simplicity and widespread adoption.

We also introduce an additional retrieval method to compare our ap-
proach against another hybrid strategy. Inspired by the work of Hy-
bridRAG[83] and LangChain5 described in section 2.7.4, we introduce a base-
line approach termed Naive Hybrid Retrieval. This method applies both
Path Retrieval and Vector Retrieval in sequence, simply concatenating their
results. Specifically, for each query, we first retrieve up to three chunks using
the Path Retrieval. If more than three chunks are retrieved, only those with
the highest vector similarity to the query are retained. We then employ Vec-
tor Retrieval to retrieve additional chunks, ensuring a total of five retrieved
passages. This approach serves as a simplistic form of hybrid retrieval, where
multiple methods are combined without any deeper integration of their rele-
vance signals. By using this as a baseline, we aim to compare our approach
against a straightforward hybrid strategy, highlighting the advantages of our
more refined retrieval mechanism.

Since this method simply concatenates the results of two different retrieval
approaches, we believe that evaluating its effectiveness with only three re-
trieved chunks would not be meaningful. Given that the chunks are sourced
from two distinct methods, a smaller retrieval set would not adequately re-
flect the combined contributions of both techniques. This issue becomes even
more pronounced when considering just a single retrieved chunk, where the
hybrid nature of the approach would be effectively lost. For this reason, we
retrieve a total of five chunks for the standard QA task, ensuring a more bal-
anced evaluation of the method’s performance. For Multi-Hop QA, however,
since a larger number of chunks is already required to reconstruct multi-step
reasoning paths, we maintain evaluations at 4, 6, and 8 retrieved chunks, in
line with the other retrieval techniques.

5blog.langchain.dev/enhancing-rag-based-applications-accuracy-by-constructing-and-
leveraging-knowledge-graphs/

67

https://blog.langchain.dev/enhancing-rag-based-applications-accuracy-by-constructing-and-leveraging-knowledge-graphs/
https://blog.langchain.dev/enhancing-rag-based-applications-accuracy-by-constructing-and-leveraging-knowledge-graphs/


4.3 Evaluation of the Retrieval System
In this section, we evaluate our system from a retrieval perspective. Specif-
ically, we assess the effectiveness of the retrieval process by leveraging the
independent variable “is_answer”, which we have assigned to each chunk. By
applying our retrieval pipeline, we measure the proportion of retrieved chunks
that actually contain the correct answer to the given question. The analy-
sis of how this retrieval approach impacts the overall quality of responses
generated by the RAG system is instead deferred to Section 4.4.2.

The questions in the NQ-dev-20% dataset are flattened to create a train-
ing dataset where each observation corresponds to a chunk retrieved by at
least one of the retrieval methods. This process results in a dataset of 50,167
observations, among which 6,245 chunks are labeled with is_answer = 1,
indicating that they contain the correct answer. To address class imbalance,
active sampling is applied to reduce the number of is_answer = 0 observa-
tions to match the 6,245 positive cases. This results in a balanced training
dataset of 12,490 observations. Finally, this dataset is further split, with 80%
(9992) chunks used for actual model training and the remaining 20% (2498)
reserved for validation during model training.

Then, the retrieval pipeline is implemented as described in detail in 3.2.
The only consideration to be made in this regard concerns the imple-

mentation of Approximate Nearest Neighbor (ANN) search. Databases like
Neo4j, which to be more precise employs the Hierarchical Navigable Small
World (HNSW) algorithm[89], implement ANN because, when dealing with
large datasets, exact nearest neighbor searches can be computationally ex-
pensive and slow. ANN, on the other hand, significantly reduces query times
by sacrificing some accuracy for speed. In the advanced configuration settings
of the index two hyperparameters can be set to change the behavior of the
algorithm. The first controls the maximum number of connections each node
has in the HNSW graph. Increasing its value may lead to greater accuracy
at the expense of increased index population and update times, especially
for vectors with high dimensionality. The other one represents the number
of nearest neighbors tracked during the insertion of vectors into the HNSW
graph. Increasing this value improves the quality of the index, and may lead
to greater accuracy (with diminishing returns) at the expense of increased
index population and update times6. The choice of these parameters highly
depends on each specific use-case and is left to the reader.

In the case of this thesis, numerous experiments have shown that the best
6neo4j.com/docs/cypher-manual/current/indexes/semantic-indexes/vector-

indexes/#create-vector-index

68

https://neo4j.com/docs/cypher-manual/current/indexes/semantic-indexes/vector-indexes/#create-vector-index
https://neo4j.com/docs/cypher-manual/current/indexes/semantic-indexes/vector-indexes/#create-vector-index


performances (in terms of speed-accuracy balance) actually came from simply
increasing the number of retrieved nodes. When interested in retrieving k
nodes, the numberOfNearestNeighbor parameter of the query to the index
is instead set to k + n, where n is an arbitrary parameter. The resulting
k + n nodes are then ordered by their score and only the top k nodes are
actually extracted. This approach works because ANN algorithms divide the
search space in “buckets”. By increasing the parameter to k+n, the index is
asked to search a wider neighborhood of the vector space, i.e. the algorithm
explores more buckets of the index, in this way considering a larger group
of candidate vectors. This wider search can find points that the narrower
search might miss due to the approximate nature of the algorithm.

All the results shown in this thesis are computed by retrieving a sample
of 100 nodes, and then narrowing down to the top k matches.

4.3.1 Retrieval Metrics

To evaluate the quality of the retrieval pipeline we use three metrics:

1. Precision is defined as the ratio between the number of retrieved Chunk
nodes that contain the answer and the total number of retrieved chunks.
This metric quantifies the proportion of retrieved nodes that are actu-
ally relevant to answering the question. A low precision value implies
that a significant portion of the context passed to the LLM for infer-
ence is irrelevant, potentially hindering the model’s ability to generate
a correct response.

2. Recall is computed as the ratio between the number of retrieved Chunk
nodes that contain the answer and the total number of chunks that
contain the answer. This metric assesses how effectively the retrieval
process captures the relevant information necessary for answering the
query.

3. Hit is a binary metric that equals 1 if at least one of the retrieved nodes
contains the answer and 0 otherwise. This measure is particularly useful
for non-Multi-Hop questions, where the presence of a single relevant
Chunk ensures that the answer is included in the context provided to
the LLM, thereby enabling, though not ensuring, the RAG system to
generate a correct response.

4. Set Coverage is a binary metric that equals 1 if all the necessary
chunks required to answer the query are retrieved and 0 otherwise.
This measure is crucial for Multi-Hop questions, where answering the
query requires retrieving all the relevant chunks.

69



5. F-Score evaluates the trade-off between precision and recall. It is
computed as

Fβ = (1 + β2) · Precision · Recall
(β2 · Precision) + Recall

where β determines the relative importance of recall over precision. In
the context of RAG systems, recall is often considered more critical
than precision, as ensuring that the answer is present in the retrieved
context is more important than filtering out irrelevant chunks. To
reflect this, we report the F1-score (equal importance to precision and
recall) alongside F2 and F3 scores, which progressively emphasize recall
over precision.

One crucial consideration is that these metrics are significantly influenced
by the number of chunks retrieved by the system. As the number of retrieved
chunks increases, precision is likely to decrease, since the denominator of
its ratio grows while the numerator may remain unchanged if all relevant
chunks have already been retrieved. Conversely, recall tends to increase, as
the denominator remains fixed while the probability of retrieving additional
relevant chunks rises. The same holds for the Hit metric, which becomes more
likely to be 1: the larger the retrieved sample, the higher the probability that
at least one correct chunk is included.

The only metric that inherently addresses this trade-off is the F-score, as
it balances precision and recall. However, determining the optimal balance
remains a challenge, especially in the RAG domain, where these metrics do
not necessarily carry the same weight. The choice of how many chunks to
retrieve ultimately depends on the specific use case and is beyond the scope
of this experiment.

To provide a comprehensive assessment, we report precision, recall, and
hit rate for different retrieval sizes, and the decision of which dimensionality
best suits one’s own specific case is left to the reader. In particular, Accuracy-
k, Recall-k, Hit-k and SetCoverage-k measure the performance of the retrieval
system when tasked with retrieving k chunks. In the evaluation on NQ-dev-
20% we retrieve 1, 3, and 5 chunks, while for NQ-MH-100 we retrieve 4, 6, and
8 chunks. These values were chosen arbitrarily, with the intermediate value
(3 and 6 respectively) set to be twice as large in the Multi-Hop evaluation,
reflecting the need for retrieving at least twice the number of chunks in such
cases.

70



4.3.2 Retrieval Performance

In this section, we compare the results of each retrieval approach. The results
are calculated on the NQ-dev-20% test set and are presented in 4.1.

Retrieval
Method

N. of
Elements

N. of
Chunks Precision Recall Hit F1 F2 F3

Vector
Retrieval

1 Chunk 1 0.398 0.308 0.398 0.347 0.323 0.315

3 Chunks 3 0.241 0.528 0.622 0.330 0.426 0.472

5 Chunks 5 0.175 0.630 0.710 0.274 0.414 0.500

Page
Retrieval

1 Page ∼ 35 0.071 0.789 0.789 0.130 0.261 0.392

2 Pages ∼ 72 0.029 0.861 0.861 0.056 0.128 0.223

3 Pages ∼ 108 0.018 0.885 0.885 0.035 0.083 0.152

Section
Retrieval

1 Section ∼ 3 0.207 0.352 0.421 0.261 0.309 0.329

3 Sections ∼ 6 0.113 0.604 0.663 0.190 0.323 0.421

5 Sections ∼ 9 0.058 0.798 0.829 0.108 0.225 0.351

Entity
Retrieval

1 Entity ∼ 4 0.059 0.096 0.118 0.073 0.085 0.090

3 Entities ∼ 8 0.046 0.205 0.249 0.075 0.121 0.152

5 Entities ∼ 11 0.041 0.248 0.299 0.070 0.123 0.165

Path
Retrieval 1 Path ∼ 3 0.266 0.423 0.512 0.327 0.378 0.399

Naive Hybrid
Retrieval 5 Chunks 5 0.188 0.695 0.776 0.296 0.451 0.547

Hybrid
Retrieval

1 Chunk 1 0.478 0.371 0.478 0.418 0.388 0.379

3 Chunks 3 0.298 0.662 0.756 0.411 0.532 0.590

5 Chunks 5 0.215 0.780 0.851 0.337 0.511 0.618

Table 4.1: Retrieval Results on NQ-dev-20%

As anticipated in 4.2, Vector Retrieval serves as one of our main base-
lines. The findings indicate that retrieving five chunks includes the correct
answer in 71% of cases. At the same time, the precision score remains rea-
sonable, suggesting that, on average, approximately one out of every five
retrieved chunks is relevant to the query. Although increasing the number of
retrieved chunks could further boost the hit rate, excessively long contexts,
such as those containing ten or more concatenated chunks, might negatively

71



impact the LLM’s response quality, especially if the retrieved chunks are pre-
sented in an improper order. In contrast, retrieving three chunks offers a more
conservative yet still effective balance between recall and precision. However,
when retrieving only one chunk, the performance significantly drops, with the
correct node appearing in just 40% of the cases, making it a less viable option
for reliable retrieval.

Page Retrieval is a broad and expansive approach, as it retrieves all
chunks associated with n Wikipedia pages. Given this wide retrieval scope,
it is unsurprising that the method yields low precision scores. However,
its high recall rate suggests that it is effective in narrowing down the search
space, making it a valuable first step for the Path Retrieval module. Notably,
the relevant chunks are found within the top three retrieved pages 89% of
the time.

Section Retrieval appears to yield better results, particularly when ex-
tracting five entities, where it achieves a more balanced trade-off between
hit rate and precision. While the hit rate is slightly lower than that of Page
Retrieval with three pages extracted, the precision is three times higher.
However, despite these improvements, its performance still falls significantly
short of Vector Retrieval. When comparing precision at the same level (one
parent extracted for Section Retrieval and three chunks extracted for Vector
Retrieval) the hit rate of Vector Retrieval is substantially higher, outper-
forming Section Retrieval by 20 percentage points.

Entity Retrieval appears to be the weakest method among those eval-
uated so far. With only one entity extracted, its precision is half that of
Section Retrieval when extracting three parent entities, and its hit rate is
merely a third.

The results of the Path Retrieval are among the most promising. Al-
though its hit rate is 10 percentage points lower than that of Vector Retrieval
with three extracted chunks, it achieves the highest precision among all mod-
els. This indicates that the model is highly effective in identifying the correct
chunks while minimizing the inclusion of irrelevant paragraphs. By reducing
the presence of non-relevant content, it helps maintain a cleaner context, ul-
timately preventing confusion for the LLM and preserving the quality of its
responses.

The Naive Hybrid Retrieval, presented as one of our main baselines in
section 4.2, is the only method cited in this section that is not incorporated
in the hybrid retrieval, but that serves solely as a point of comparison with
existing works presented in the state of the art (section 2.7.4). Compared
to vector retrieval with the same number of retrieved chunks (5), Naive Hy-
brid Retrieval demonstrates improved precision and recall, aligning with the
findings of the HybridRAG paper. While the gain in precision is marginal,

72



the improvement in recall is more significant, increasing from 63% to nearly
70%. This leads to a hit rate that is approximately 7 percentage points
higher, indicating that, on average, Naive Hybrid Retrieval retrieves at least
one correct answer 7% more often than vector retrieval. These results high-
light the benefits of incorporating a graph-based retrieval component, even
in a simple concatenation-based hybrid approach.

The results unequivocally demonstrate the superiority of our Hybrid
Retrieval approach over the baseline Vector Retriever and all the other in-
dividual methods across all evaluated metrics. Even when retrieving just a
single chunk, our model consistently outperforms the baseline, achieving sig-
nificant improvements in precision, recall, and detection. As we increase the
number of retrieved chunks, the gap between the two methods becomes even
more pronounced. With three retrieved chunks, Hybrid Retrieval substan-
tially enhances recall and detection, capturing a broader spectrum of relevant
information while maintaining a slight advantage in precision. Notably, with
just three chunks, Hybrid Retrieval successfully retrieves at least one rele-
vant chunk in 76% of cases, meaning that in three out of four instances, the
model receives the necessary information to generate a correct response. In
contrast, Vector Retrieval achieves this only 62%. This trend persists with
five retrieved chunks, where the hit rate reaches an impressive 85%, a 14
percentage-point improvement over Vector Retrieval and 7 over the Naive
Hybrid Retrieval. All this is done while maintaining a strong precision of
21.5%, ensuring that the model is not provided with useless context that
could degrade the quality of its response.

The strongest confirmation of the advantage of our Hybrid method over
any other retrieval approach comes from the F-scores, which we have identi-
fied as the most important metrics due to their ability to balance precision
and recall. Across all three reported measures (F1, F2, and F3), which differ
in the weight assigned to recall relative to precision, our method consis-
tently achieves the highest scores compared to all other retrieval systems,
and does so with a large margin. This demonstrates that, regardless of the
user’s preferred trade-off between the relevance ratio of the extracted context
(precision) and the likelihood of retrieving the necessary chunks (recall), our
approach delivers superior performance.

73



N. of
Chunks

Retrieval
Method

Metrics

Precision Recall Set Coverage F1 F2 F3

4

Vector 0.175 0.357 0.090 0.235 0.296 0.323

Hybrid Naive 0.125 0.381 0.110 0.188 0.270 0.316

Hybrid 0.302 0.599 0.330 0.402 0.501 0.545

6

Vector 0.138 0.418 0.160 0.207 0.297 0.347

Hybrid Naive 0.143 0.432 0.170 0.215 0.308 0.359

Hybrid 0.232 0.688 0.430 0.347 0.494 0.575

8

Vector 0.111 0.448 0.180 0.178 0.279 0.344

Hybrid Naive 0.155 0.467 0.200 0.232 0.333 0.389

Hybrid 0.180 0.711 0.480 0.287 0.447 0.549

Table 4.2: Retrieval Results on NQ-MH-100

The performance gap between our hybrid retrieval method and the others
becomes even more pronounced when evaluated on the Multi-Hop dataset, as
highlighted by the results presented in Table 4.2. With 4 retrieved chunks,
the probability of retrieving all relevant chunks for a given query is three
times higher with our method than both the other two approaches. At 6
retrieved chunks, the vector retrieval correctly retrieves all relevant chunks
in 16% of cases. The Naive Hybrid Retrieval method performs slightly bet-
ter than pure vector retrieval, demonstrating the benefits of incorporating a
graph structure and leveraging our graph traversal mechanism for Multi-Hop
question answering. However, its simplistic approach of merely concatenat-
ing results from two retrieval methods significantly limits the graph’s full
potential. This is evident in the hit rate, where Naive Hybrid Retrieval
reaches only 17%, compared to the 43% achieved by our approach. Even as
k increases to 8, hybrid retrieval continues to maintain a substantial lead,
with a Recall of 71% compared to 45% for vector retrieval and 47% of Naive
Hybrid Retrieval.

Even in the results for multi-hop questions, the significant improvement
of our system over the two baseline methods is strongly supported by the
F-score results. Regardless of the chosen trade-off between precision and
recall, as represented by different beta values (F1, F2, F3), our approach
consistently achieves the highest scores across all retrieval settings.

Furthermore, it is important to emphasize once again that the results

74



of our Hybrid Retrieval on the Multi-Hop dataset are obtained without any
retraining, meaning that we use the same neural network trained on the NQ-
dev-80% training dataset. This demonstrates the model’s ability to gener-
alize effectively to Multi-Hop questions, despite never having been explicitly
trained on them. The fact that the model performs well in this setting high-
lights the robustness of our retrieval approach and its capacity to handle
more complex reasoning tasks without requiring additional fine-tuning.

4.4 Evaluation of the RAG System
In this section, we integrate both retrieval techniques into a complete Ques-
tion Answering pipeline using RAG. This allows us to assess whether the su-
perior retrieval quality demonstrated by our hybrid system effectively trans-
lates into improved answer accuracy, finally answering to our last research
question.

Since evaluating answer quality requires a ground truth, this assessment
cannot be applied to the entire NQ-dev-20% test set. The primary limitation
comes from the NQ dataset itself, where some questions are only linked to the
chunk containing the answer (“long-answer” annotation) without explicitly
specifying the exact answer itself (“short answer” annotation). To ensure a
reliable evaluation, we restrict our analysis to questions for which at least
one annotator has provided a short answer, using these as reference points to
assess the accuracy of our RAG-generated responses. We define this subset
of the NQ-dev-20% test set, composed only of questions with a short-answer
annotation, as NQ-dev-20%-sa. This refined test set serves as the benchmark
for evaluating the performance of our RAG system. However, given that our
main focus is on retrieval quality, this constraint does not significantly impact
our overall evaluation. In contrast, for the Multi-Hop dataset, since it was
synthetically constructed, we have complete access to full answer annotations.

For each question in the NQ-dev-20%-sa test set, we retrieve 3 chunks us-
ing Vector Retrieval and 3 chunks using our Hybrid Retrieval. The retrieved
context is then fed into an LLM (GPT-4o) along with the original question.
We use the prompt illustrated in 4.4 and parse the generated responses.

[caption ={ System Prompt for Answer Generation }]
Imagine being an extractive Question Answering System.
Respond to the user ’s question extracting the smallest possible slice of

text from the context , without changing anything.
If the answers are multiple , separate the extracted slices of text with

a forward slash ("/").
If no answer to the user ’s query can be found in the context , output ‘‘

ND ’’.
In any case , do not add any comments to your answer.

75



For the Multi-Hop test set, we retrieve 6 chunks instead of 3, compen-
sating for the fact that Multi-Hop questions require additional information
to be answered correctly. The same methodology is applied, but with a
carefully designed prompt (showed in 4.4) ensuring that the LLM extracts
answers strictly from the provided context rather than relying on its para-
metric knowledge.

[caption ={ System Prompt for MultiHop Answer Generation }]
Imagine being a question answering system.
You are not interested in giving always the right answer , but in

evaluating the informative content of the context , and therefore
answering the question using ONLY the information that can be
extracted from the context.

You are not interested in assessing wheter the statements contained in
the context are true , but in reasoning over the context and answer
the question based on its statements.

If the question CANNOT be answered from the context alone , output the
tag ’ND ’.

Else , if the question can be answered using ONLY the informations
present in the text , output the answer that can be inferred using
only the information present in the context.

4.4.1 RAG Metrics

To evaluate the quality of the RAG’s responses, instead, we employ four
different metrics:

1. Exact match is the most naive metric, simply comparing if the gen-
erated answer is exactly the same as the ground truth.

2. ROUGE-L measures the overlap between the generated response and
the reference text based on their longest common subsequence.

3. Cosine Similarity measures the cosine similarity between the vec-
tor representations of the generated response and the ground truth,
evaluating how similar the two are in terms of their semantic content.

4. RAGAS: Factual Correctness evaluates the extent to which the
generated response aligns with the reference. The metric, developed
by RAGAS7[23], employs an LLM to decompose both the response and
the reference into individual claims. Subsequently, it utilizes natural
language inference techniques to assess the factual overlap, quantified
using a F1 score, between these claims.

7docs.ragas.io

76

https://docs.ragas.io/en/stable/


4.4.2 RAG Performance

Retrieval EM ROUGE Cosine FC

NQ-dev-20%-sa
Vector 0.355 0.461 0.891 0.636

Hybrid 0.399 0.515 0.903 0.672

NQ-MH-100
Vector 0.040 0.394 0.843 0.424

Hybrid 0.060 0.507 0.887 0.519

Table 4.3: Comparison of Vector and Hybrid RAG methods in MultiHop
and Non-MultiHop QA.

The evaluation results of the RAG-generated answers confirm that the su-
perior retrieval effectiveness of our hybrid system translates into a higher
accuracy of the final responses. Table 4.3 shows that across all metrics, rang-
ing from simpler ones to more complex measures, our pipeline consistently
outperforms vector retrieval with statistically significant improvements.

Similar to the retrieval results, where the performance gap widened in the
Multi-Hop dataset, the advantages of the hybrid approach become even more
pronounced in the RAG evaluation for Multi-Hop QA. Notably, the cosine
similarity metric is, on average, 5% higher with the hybrid method, while the
factual correctness score shows an even greater improvement, increasing from
4% in the standard dataset to 9% in the Multi-Hop dataset. These results
highlights the hybrid method’s ability to retrieve and utilize more relevant
information in complex reasoning tasks.

4.5 Additional Evaluations and Findings
In this section, we present additional results obtained during the research to
provide a broader perspective on the effectiveness of our proposed system.
Section 4.5.1 examines the importance of each feature in identifying the most
relevant chunk. This analysis allows us to assess which retrieval methods
play a crucial role in locating the chunk containing the correct answer and
which have a lesser impact. Section 4.5.2 demonstrates the effectiveness of
the methodologies applied during the experiment, as described in section
3.2: local standardization (3.2.2) and active sampling (3.2.2). Finally, Sec-
tion 4.5.3 presents the model’s performance when trained on a significantly

77



reduced dataset. This evaluation helps determine whether our pipeline re-
mains applicable in scenarios where only a limited amount of training data
is available.

4.5.1 Features Importance in Retrieval

Figure 4.2: Features Importance in Retrieval

The subgoal of the second objective was: “Understanding which retrieval
methods play a more crucial role in identifying the most relevant passages,
and subsequently designing a retrieval approach that weights different re-
trieval methods proportionally to their actual importance”. While we de-
veloped a retrieval method that assigns weights to its components based on
their importance in identifying relevant passages, a key question remains:
what are the actual importances of these retrieval methods?

To address this, we trained a Random Forest model on the same NQ-
dev-80% training data extracted from the NQ dataset’s development set.

78



Interpreting the results of a FFNN is inherently complex, making it difficult
to directly assess feature importance. Although the Random Forest and
FFNN are not identical models, the Random Forest achieves comparable
results, albeit slightly lower than the FFNN. This suggests that the feature
importance scores derived from the Random Forest, which are much easier
to extract, can serve as a reasonable proxy for their importance in the neural
network. The results of this analysis are presented in Figure 4.2.

Unsurprisingly, the most relevant retrieval method is Vector Retrieval,
which accounts for 39% of the importance in identifying the correct answer.
This confirms that, despite other contributing factors, the content of each
chunk remains the most critical feature. However, it is noteworthy that this
method alone represents less than 40% of the final selection process. This
finding reinforces the idea, already highlighted by the retrieval and RAG
results, that retrieval methods relying exclusively on semantic similarity fail
to capture a significant portion of relevant information.

The second most important methods, Section Retrieval and Page Re-
trieval, are those directly related to the structure and organization of the
document. These account for 24.4% and 19.3% of the importance respec-
tively. Interestingly, their combined importance (43.7%) surpasses that of
Vector Retrieval alone, suggesting that a chunk’s relevance is determined
not only by its content but also by its structural position within a relevant
document and chapter, with both factors contributing approximately equally.

The least influential methods are Entity Retrieval (11.2%) and Path Re-
trieval (6%). Nevertheless, together they contribute 17.1% to the retrieval
process, demonstrating that entity-based methods, which leverage semantic
relationships within the document, play a meaningful role.

It is particularly interesting to observe that Path Retrieval, despite be-
ing the most complex retrieval method, has the lowest marginal importance
(6%). This suggests that the effectiveness of the retrieval process does not
stem from the complexity of a method like Path Retrieval, which relies on
an LLM, but rather from the intelligent and non-trivial combination of rel-
atively simple methods. When Path Retrieval is removed from the model’s
training, the retrieval performance on the test set (for the top 3 extracted
chunks) drops significantly, with Precision: 28%, Recall: 61%, and Hit Rate:
71%. These results are considerably lower than those obtained with Path
Retrieval included, demonstrating its utility for achieving maximum effec-
tiveness. However, even without Path Retrieval, the performance remains
notably better than Vector Retrieval alone. The corresponding F1, F2, and
F3 scores without Path Retrieval are 0.384, 0.494, and 0.546, respectively.
This means that our approach still outperforms the Naive Hybrid Retrieval
baseline in F1 and F2 and achieves comparable results in F3. These findings

79



confirm that the key factor behind our method’s success is not the use of
more complex retrieval techniques but rather the well-designed integration
of multiple retrieval strategies.

4.5.2 Evaluation of Key Methodological Choices

Method Precision Recall Hit

Vector Retrieval 0.241 0.528 0.622

Global Standardization 0.271 0.602 0.693

Local Standardization 0.292 0.648 0.745

Active Sampling 0.298 0.662 0.756

Table 4.4: Effectiveness of the solutions implemented (3 chunks)

This section is dedicated to demonstrating the effectiveness of all the method-
ological choices presented in the Methodology section. The table 4.4 shows
a progression starting from vector retrieval, with each step incorporating an
additional methodology: Global Standardization, which is the method used
to train our model without applying the local standardization described in
Section 3; Local Standardization, implemented without the active sampling
described in Section 4; and finally, the results of our final hybrid model. Each
result is evaluated on the NQ-dev-20% test set. As shown in the table, each
methodological refinement leads to a performance increase over all the evalu-
ated metrics, demonstrating that every step in our approach has contributed
to enhancing the model’s effectiveness.

4.5.3 Performance with Limited Training Data

In this section, we shift our focus to the evaluation of the performance of
our hybrid model when trained on a limited dataset. To achieve this, we
select an even smaller subset from the original dev set of the NQ dataset.
Our subset consisted of a sample of 200 observations, balanced to include
100 instances where the independent variable is_answer equals 1, and 100
instances where it equals 0. We then retrain the model using this limited
dataset. The resulting performance metrics are detailed in table 4.5.

80



N. of
Chunks

Retrieval
Method

Metrics

Precision Recall Hit

1

Vector 0.398 0.308 0.398

Hybrid ST 0.391 0.299 0.391

Hybrid 0.478 0.371 0.478

3

Vector 0.241 0.528 0.622

Hybrid ST 0.256 0.560 0.657

Hybrid 0.298 0.662 0.756

5

Vector 0.175 0.630 0.710

Naive Hybrid 0.188 0.695 0.776

Hybrid ST 0.190 0.683 0.766

Hybrid 0.215 0.780 0.851

Table 4.5: Performance with Limited Training Data

As the results indicate, retraining the model with a significantly reduced
training dataset led to a corresponding decrease in performance. However,
the performance remained reasonably good, still surpassing the vector re-
trieval method. Specifically, the hybrid retrieval with the reduced training
sample achieved a hit rate equal to the vector retrieval when extracting one
chunk. Moreover, when extracting three chunks, the hybrid retrieval showed
a hit rate increase of almost four percentage points. Finally, the hit rate im-
proved of five percentage points when extracting five chunks. Despite these
improvements, the hybrid retrieval trained with a small dataset is still sub-
stantially inferior to the hybrid retrieval trained with the complete dataset
and performs on par, at least when extracting five chunks, with the naive
retrieval.

This demonstrates that those who wish to develop a pipeline similar to
ours, but have a significantly smaller dataset, could still obtain advanta-
geous results from implementing our pipeline instead of simply using vector
retrieval. Nevertheless, as previously shown in the evaluation of our pipeline
on the Multi-Hop dataset, retraining the model is not always necessary.

81



Chapter 5

Conclusion and Future
Developments

The objective of this thesis was to design a complete retrieval approach,
ranging from document structuring to the retrieval model itself, that could
determine the most relevant chunks by integrating and combining all the
informational dimensions of the original documents. These informational
dimensions encompass three key aspects, either explicitly or implicitly em-
bedded in the document: its content, its structure, and the entities mentioned
within it, along with the semantic relationships that interconnect them. We
argue that a retrieval system incapable of fully leveraging all these dimensions
is insufficient to effectively handle all query types.

Our approach was developed in two main phases. First, we aimed to
construct a document representation that explicitly preserves and organizes
all informational dimensions. Second, we sought to develop a retrieval system
capable of utilizing this enriched structure to maximize retrieval effectiveness.
For this second objective, we aimed at designing a hybrid approach that could
merge relevance scores from different retrieval methods. Each individual
method would assign a relevance score to a chunk based on its respective
informational dimension, and our model would then integrate these scores
into a single comprehensive relevance measure. Crucially, we aimed to make
this integration not trivial: since some retrieval methods are more effective
than others in identifying the correct chunks, our model must consequently
weight their contributions rather than treating them as equally important.

In Section 2, we reviewed the state-of-the-art research in document struc-
turing and hybrid retrieval. We found that no existing approach explicitly
represents all informational dimensions of a document, inevitably leading to
a loss of potentially valuable information during retrieval. As a consequence,
since retrieval performance is inherently constrained by the representation of

82



the underlying KB, we did not identify any system capable of fully leveraging
all dimensions to determine the most relevant chunks. While most retrieval
methods focus on a single dimension, some hybrid approaches that incorpo-
rate multiple dimensions do exist. However, these methods do not combine
individual retrieval scores into a unified ranking, but they either merge the
sets of retrieved chunks from each method or apply retrieval techniques se-
quentially, filtering chunks at each stage.

In Section 3, we outlined our approach to achieving the first two main
objectives. To address the first objective, Section 3.1 introduced a KG-based
document representation designed to explicitly preserve all informational di-
mensions. In this representation, “Entity” nodes are created to represent
the entities mentioned within documents and are interconnected based on
relations extracted from DBpedia. Note that, since we work with encyclo-
pedic documents, Entity and Pages are the same thing, since each entity is
represented by its corresponding Wikipedia page. The hierarchical structure
of the document is captured through “SubChapter” nodes, which maintain
links to their corresponding “Entity” nodes. These structural elements en-
hance content navigation by guiding the retrieval algorithm toward the most
relevant document sections. Finally, the textual content is segmented into
smaller “Chunk” nodes, each linked to its parent Entity or SubChapter, as
well as to adjacent chunks and referenced entities.

To achieve the second objective, we trained a Neural Network on a subset
of the development set from Google’s NQ dataset (NQ-dev-80%) to integrate
retrieval scores from multiple independent methods. Specifically, three re-
trieval approaches, “Section Retrieval”, “Page Retrieval”, and “SubChapter
Selector”, were employed to estimate a chunk’s relevance based on its po-
sition within the document structure, effectively leveraging the document
organization as captured by our knowledge representation. An entity-centric
perspective was introduced through the “SubGraph Retrieval” and “Entity
Retrieval” methods, which exploit entities and their relationships. The Sub-
Chapter Selector and SubGraph Retrieval were then combined into a “Path
Retrieval” mechanism, designed to traverse the graph and identify the most
relevant path for a given query. Finally, a “Vector Retrieval” method is tasked
with retrieving the most relevant chunk purely based on its textual content.
The Neural Network is trained to integrate these diverse sources, ultimately
determining which Chunk nodes to retrieve to answer the user’s query. In
this way, each retrieval method contributes with a distinct perspective on a
chunk’s relevance, and the network synthesizes these insights to generate the
final response.

To evaluate our approach, in section 4.1 we introduce two testing datasets.
First, we assess our hybrid retrieval system on the remaining portion of the

83



development set from Google’s NQ dataset (NQ-dev-20%), comparing its
performance against each individual retrieval method and a new baseline.
This baseline mimics hybrid state-of-the-art approaches by naively combining
chunks extracted through a Graph Traverser with those retrieved via Vector
Retrieval. Additionally, we evaluate our method on a synthetic MultiHop
dataset consisting of 100 questions generated from the same KB.

The results in Section 4.3.2 unequivocally demonstrate the superiority of
our Hybrid Retrieval approach over both the baseline Vector Retriever and all
individual retrieval methods across all evaluated metrics. The strongest ev-
idence supporting the effectiveness of our method comes from the F scores,
which we identify as the most critical metrics due to their ability to bal-
ance precision and recall. Across all three reported measures (F1, F2, and
F3), which vary in relative weight assigned to recall and precision, our ap-
proach consistently achieves the highest scores, outperforming all other re-
trieval systems by a significant margin. This demonstrates that, regardless
of the preferred trade-off between the relevance ratio of the retrieved con-
text (precision) and the likelihood of retrieving all necessary chunks (recall),
our method delivers superior performance. Furthermore, in Section 4.4.2, we
show that this improved retrieval precision translates directly into higher-
quality responses generated by the RAG system.

The results on the Multi-Hop dataset follow the same trend, demonstrat-
ing an even larger performance gap compared to other retrieval methods and,
consequently, a higher quality of the responses generated by the RAG system.
This outcome is particularly remarkable given that the Neural Network is not
retrained for Multi-Hop queries, but the model originally trained to integrate
retrieval scores on NQ-dev-80% is directly applied to retrieve relevant chunks
for these entirely new Multi-Hop questions, highlighting a remarkable ability
of the model to generalize to previously unseen types of questions.

Finally, in Section 4.5, we present additional findings obtained during our
investigation to provide a broader perspective on the effectiveness of our pro-
posed system. In particular, Section 4.5.1 analyzes the relative contribution
of each retrieval method. One of the most noteworthy insights is that Path
Retrieval, despite being the most complex retrieval approach (since it lever-
ages an LLM) exhibits the lowest marginal importance. This suggests that
the overall effectiveness of our retrieval process does not stem from the com-
plexity of a single method like Path Retrieval, but rather from the strength
of our approach: intelligently and non-trivially combining multiple relatively
simple retrieval methods.

In addition, in this section, we validate key methodological choices and
demonstrate that our approach remains promising, albeit less impressive,
even when trained on a very limited dataset.

84



Despite the strong results achieved, certain limitations must be addressed
in future research to fully realize the potential of our method. One notable
limitation stems from its ability to be trained on a small dataset. While this
characteristic is encouraging, the resulting performance remains on par with
a Naive Hybrid Approach. However, the evaluation of the MultiHop dataset
suggests that our model does not always require retraining to effectively
handle new types of questions. Future research should further investigate this
generalization capability by evaluating the model on entirely new datasets
without retraining. If we can confirm that a model trained on our dataset
consistently generalizes across different tasks, then the observed performance
limitations on small training sets would become far less significant.

One of the most significant limitations is that, in this thesis, we have
used Wikipedia pages as the initial unstructured data collection on which
we applied our method. This choice allowed us to leverage Wikipedia hyper-
links for parsing entity mentions and to extract relationships using parallel
databases like DBpedia. This ensured high-quality extractions and simpli-
fied the process, allowing us to focus on the main objectives of this thesis:
structuring the extracted information and applying a hybrid retrieval system
on this structure. However, in the more general case of truly unstructured
documents, where techniques like NER, NEL, coreference resolution, and re-
lation extraction would need to be applied to extract such information, our
approach’s performance would be heavily dependent on the accuracy of these
extraction methods. As the performance of these methods degrades, so too
would the performance of our approach. Therefore, it is necessary for fu-
ture research to evaluate the impact of extracting information entirely from
scratch using these models.

Another limitation lies in the weighting mechanism of our retrieval meth-
ods. Although our approach adjusts the importance of each retrieval method
based on its effectiveness in identifying the most relevant chunk, it does not
dynamically adapt to the specific query being asked. Some queries may be
more structured, thus benefiting more from hierarchical retrieval, while oth-
ers may be less structured and better served by entity-based retrieval. Future
research might explore adaptive weighting mechanisms.

An interesting direction for future research could involve the fine-tuning
of the parameters selected during the development process. Parameters such
as the number of nodes extracted for each type of retrieval, the default co-
sine similarity assigned to missing values (0.75), the percentage of chunks
retained among the hard negatives during active sampling (10%), and the
initial nodes for the SubGraph Retriever (3) were chosen based on heuristic
reasoning rather than rigorous scientific justification. Consequently, there is
potential for future studies to identify more optimal combinations of these

85



parameters, which could further enhance the overall performance and qual-
ity of the model. This exploration could lead to a more robust and efficient
framework, offering significant improvements in the retrieval process and the
resulting graph-based data analysis.

Scalability presents another key challenge. While our knowledge graph
representation effectively integrates multiple informational dimensions, its
computational cost can escalate significantly when applied to large-scale doc-
ument collections. As highlighted in our experimental section, parsing 5,223
Wikipedia pages into our graph representation took 36 minutes. Although
this duration is manageable for most real-world applications, it could be-
come a bottleneck in open-domain question answering scenarios, where our
approach might be required to parse the entirety of Wikipedia. Our approach
is not inherently slow; rather, optimization was not our primary focus as we
concentrated on validating the method itself. Future research could focus
on enhancing scalability for larger datasets, for instance, by incorporating
parallelization in the parsing process.

Lastly, integrating multiple retrieval methods introduces complexity into
the system. While this fusion improves effectiveness, it may also reduce
interpretability, making it challenging to understand the relative contribution
of each method and diagnose potential errors. By incorporating methods to
clarify the contribution of each retrieval component and providing insights
into why a particular chunk was selected, users can build trust in the system,
and developers can better diagnose and refine the retrieval process.

86



References

[1] Tom Brown et al. “Language models are few-shot learners”. In: Ad-
vances in neural information processing systems 33 (2020), pp. 1877–
1901.

[2] Gemini Team et al. “Gemini: a family of highly capable multimodal
models”. In: arXiv preprint arXiv:2312.11805 (2023).

[3] Patrick Lewis et al. “Retrieval-augmented generation for knowledge-
intensive nlp tasks”. In: Advances in Neural Information Processing
Systems 33 (2020), pp. 9459–9474.

[4] Yunfan Gao et al. “Retrieval-augmented generation for large language
models: A survey”. In: arXiv preprint arXiv:2312.10997 (2023).

[5] Zhuyun Dai et al. “Promptagator: Few-shot dense retrieval from 8 ex-
amples”. In: arXiv preprint arXiv:2209.11755 (2022).

[6] Peitian Zhang et al. “Retrieve anything to augment large language
models”. In: arXiv preprint arXiv:2310.07554 (2023).

[7] Zichun Yu et al. “Augmentation-adapted retriever improves gener-
alization of language models as generic plug-in”. In: arXiv preprint
arXiv:2305.17331 (2023).

[8] Xintao Wang et al. “Knowledgpt: Enhancing large language mod-
els with retrieval and storage access on knowledge bases”. In: arXiv
preprint arXiv:2308.11761 (2023).

[9] Xiaoxin He et al. “G-retriever: Retrieval-augmented generation for tex-
tual graph understanding and question answering”. In: arXiv preprint
arXiv:2402.07630 (2024).

[10] Minki Kang et al. “Knowledge graph-augmented language mod-
els for knowledge-grounded dialogue generation”. In: arXiv preprint
arXiv:2305.18846 (2023).

87



[11] Riccardo Pozzi et al. “Combining Knowledge Graphs and NLP to An-
alyze Instant Messaging Data in Criminal Investigations”. In: Interna-
tional Conference on Web Information Systems Engineering. Springer.
2025, pp. 427–442.

[12] Cyril Zakka et al. “Almanac—retrieval-augmented language models for
clinical medicine”. In: NEJM AI 1.2 (2024), AIoa2300068.

[13] Zhentao Xu et al. “Retrieval-augmented generation with knowledge
graphs for customer service question answering”. In: Proceedings of the
47th International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval. 2024, pp. 2905–2909.

[14] Forbes Technology Council. “The Big Unstructured Data Problem”.
In: Forbes (2017). url: https : / / www . forbes . com / sites /
forbestechcouncil/2017/06/05/the-big-unstructured-data-
problem/.

[15] Tam Harbert. “Tapping the power of unstructured data”. In: MIT
Sloan. Feb 1 (2021), p. 3.

[16] Yikun Han, Chunjiang Liu, and Pengfei Wang. “A comprehensive sur-
vey on vector database: Storage and retrieval technique, challenge”. In:
arXiv preprint arXiv:2310.11703 (2023).

[17] Jing Li et al. “A survey on deep learning for named entity recognition”.
In: IEEE transactions on knowledge and data engineering 34.1 (2020),
pp. 50–70.

[18] Lingfeng Zhong et al. “A comprehensive survey on automatic knowledge
graph construction”. In: ACM Computing Surveys 56.4 (2023), pp. 1–
62.

[19] Qianqian Zhang, Mengdong Chen, and Lianzhong Liu. “A review on
entity relation extraction”. In: 2017 second international conference on
mechanical, control and computer engineering (ICMCCE). IEEE. 2017,
pp. 178–183.

[20] Xibin Dong et al. “A survey on ensemble learning”. In: Frontiers of
Computer Science 14 (2020), pp. 241–258.

[21] Omer Sagi and Lior Rokach. “Ensemble learning: A survey”. In: Wi-
ley interdisciplinary reviews: data mining and knowledge discovery 8.4
(2018), e1249.

[22] Tom Kwiatkowski et al. “Natural questions: a benchmark for question
answering research”. In: Transactions of the Association for Computa-
tional Linguistics 7 (2019), pp. 453–466.

88

https://www.forbes.com/sites/forbestechcouncil/2017/06/05/the-big-unstructured-data-problem/
https://www.forbes.com/sites/forbestechcouncil/2017/06/05/the-big-unstructured-data-problem/
https://www.forbes.com/sites/forbestechcouncil/2017/06/05/the-big-unstructured-data-problem/


[23] Shahul Es et al. “Ragas: Automated evaluation of retrieval augmented
generation”. In: arXiv preprint arXiv:2309.15217 (2023).

[24] Lynette Hirschman and Robert Gaizauskas. “Natural language question
answering: the view from here”. In: natural language engineering 7.4
(2001), pp. 275–300.

[25] Ali Mohamed Nabil Allam and Mohamed Hassan Haggag. “The ques-
tion answering systems: A survey”. In: International Journal of Re-
search and Reviews in Information Sciences (IJRRIS) 2.3 (2012).

[26] Eric Brill, Susan Dumais, and Michele Banko. “An analysis of the
AskMSR question-answering system”. In: Proceedings of the 2002 con-
ference on empirical methods in natural language processing (EMNLP
2002). 2002, pp. 257–264.

[27] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova.
“Bert: Pre-training of deep bidirectional transformers for language un-
derstanding”. In: Proceedings of naacL-HLT. Vol. 1. Minneapolis, Min-
nesota. 2019, p. 2.

[28] P Rajpurkar. “Squad: 100,000+ questions for machine comprehension
of text”. In: arXiv preprint arXiv:1606.05250 (2016).

[29] A Vaswani. “Attention is all you need”. In: Advances in Neural Infor-
mation Processing Systems (2017).

[30] Colin Raffel et al. “Exploring the limits of transfer learning with a uni-
fied text-to-text transformer”. In: Journal of machine learning research
21.140 (2020), pp. 1–67.

[31] Kevin Meng et al. “Locating and editing factual associations in GPT”.
In: Advances in Neural Information Processing Systems 35 (2022),
pp. 17359–17372.

[32] Fabio Petroni et al. “Language models as knowledge bases?” In: arXiv
preprint arXiv:1909.01066 (2019).

[33] Adam Roberts, Colin Raffel, and Noam Shazeer. “How much knowledge
can you pack into the parameters of a language model?” In: arXiv
preprint arXiv:2002.08910 (2020).

[34] Gary Marcus. “The next decade in AI: four steps towards robust arti-
ficial intelligence”. In: arXiv preprint arXiv:2002.06177 (2020).

[35] Jason Weston, Sumit Chopra, and Antoine Bordes. “Memory net-
works”. In: arXiv preprint arXiv:1410.3916 (2014).

89



[36] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. “End-to-end
memory networks”. In: Advances in neural information processing sys-
tems 28 (2015).

[37] Armand Joulin and Tomas Mikolov. “Inferring algorithmic patterns
with stack-augmented recurrent nets”. In: Advances in neural informa-
tion processing systems 28 (2015).

[38] Guillaume Lample et al. “Large memory layers with product keys”. In:
Advances in Neural Information Processing Systems 32 (2019).

[39] Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. “Latent re-
trieval for weakly supervised open domain question answering”. In:
arXiv preprint arXiv:1906.00300 (2019).

[40] Kelvin Guu et al. “Retrieval augmented language model pre-training”.
In: International conference on machine learning. PMLR. 2020,
pp. 3929–3938.

[41] Vladimir Karpukhin et al. “Dense passage retrieval for open-domain
question answering”. In: arXiv preprint arXiv:2004.04906 (2020).

[42] Jeff Johnson, Matthijs Douze, and Hervé Jégou. “Billion-scale similarity
search with GPUs”. In: IEEE Transactions on Big Data 7.3 (2019),
pp. 535–547.

[43] M Lewis. “Bart: Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehension”. In: arXiv
preprint arXiv:1910.13461 (2019).

[44] OpenAI. New and improved embedding model. https://openai.com/
index/new-and-improved-embedding-model/. 2022.

[45] Xianming Li and Jing Li. “Angle-optimized text embeddings”. In: arXiv
preprint arXiv:2309.12871 (2023).

[46] VoyageAI. Voyage’s embedding models. https://docs.voyageai.com/
docs/embeddings. 2023.

[47] BAAI. Flagembedding. https : / / github . com / FlagOpen /
FlagEmbedding. 2023.

[48] Luyu Gao et al. “Precise zero-shot dense retrieval without relevance
labels”. In: arXiv preprint arXiv:2212.10496 (2022).

[49] Ron Litman et al. “Scatter: selective context attentional scene text
recognizer”. In: proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2020, pp. 11962–11972.

90

https://openai.com/index/new-and-improved-embedding-model/
https://openai.com/index/new-and-improved-embedding-model/
https://docs.voyageai.com/docs/embeddings
https://docs.voyageai.com/docs/embeddings
https://github.com/FlagOpen/FlagEmbedding
https://github.com/FlagOpen/FlagEmbedding


[50] Nathan Anderson, Caleb Wilson, and Stephen D Richardson. “Lingua:
Addressing scenarios for live interpretation and automatic dubbing”.
In: Proceedings of the 15th Biennial Conference of the Association for
Machine Translation in the Americas (Volume 2: Users and Providers
Track and Government Track). 2022, pp. 202–209.

[51] Nelson F Liu et al. “Lost in the middle: How language models use
long contexts”. In: Transactions of the Association for Computational
Linguistics 12 (2024), pp. 157–173.

[52] Amit Singhal et al. “Introducing the knowledge graph: things, not
strings”. In: Official google blog 5.16 (2012), p. 3.

[53] Aidan Hogan et al. “Knowledge graphs”. In: ACM Computing Surveys
(Csur) 54.4 (2021), pp. 1–37.

[54] Shirui Pan et al. “Unifying large language models and knowledge
graphs: A roadmap”. In: IEEE Transactions on Knowledge and Data
Engineering (2024).

[55] Zhengyan Zhang et al. “ERNIE: Enhanced language representation
with informative entities”. In: arXiv preprint arXiv:1905.07129 (2019).

[56] Corby Rosset et al. “Knowledge-aware language model pretraining”. In:
arXiv preprint arXiv:2007.00655 (2020).

[57] Bill Yuchen Lin et al. “Kagnet: Knowledge-aware graph networks for
commonsense reasoning”. In: arXiv preprint arXiv:1909.02151 (2019).

[58] Zhiyuan Zhang et al. “Pretrain-KGE: learning knowledge representa-
tion from pretrained language models”. In: Findings of the Association
for Computational Linguistics: EMNLP 2020. 2020, pp. 259–266.

[59] Abhijeet Kumar et al. “Building knowledge graph using pre-trained
language model for learning entity-aware relationships”. In: 2020 IEEE
International Conference on Computing, Power and Communication
Technologies (GUCON). IEEE. 2020, pp. 310–315.

[60] Jian Guan, Yansen Wang, and Minlie Huang. “Story ending generation
with incremental encoding and commonsense knowledge”. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence. Vol. 33. 01.
2019, pp. 6473–6480.

[61] Hao Zhou et al. “Commonsense knowledge aware conversation genera-
tion with graph attention.” In: IJCAI. 2018, pp. 4623–4629.

[62] Bin He et al. “Integrating graph contextualized knowledge into pre-
trained language models”. In: arXiv preprint arXiv:1912.00147 (2019).

91



[63] Xiaozhi Wang et al. “KEPLER: A unified model for knowledge embed-
ding and pre-trained language representation”. In: Transactions of the
Association for Computational Linguistics 9 (2021), pp. 176–194.

[64] Xiaoyan Wang et al. “Improving natural language inference using exter-
nal knowledge in the science questions domain”. In: Proceedings of the
AAAI conference on artificial intelligence. Vol. 33. 01. 2019, pp. 7208–
7215.

[65] Chao Feng, Xinyu Zhang, and Zichu Fei. “Knowledge solver: Teaching
llms to search for domain knowledge from knowledge graphs”. In: arXiv
preprint arXiv:2309.03118 (2023).

[66] Sören Auer et al. “Dbpedia: A nucleus for a web of open data”. In:
international semantic web conference. Springer. 2007, pp. 722–735.

[67] Kurt Bollacker, Robert Cook, and Patrick Tufts. “Freebase: A shared
database of structured general human knowledge”. In: AAAI. Vol. 7.
2007, pp. 1962–1963.

[68] Denny Vrandečić and Markus Krötzsch. “Wikidata: a free collaborative
knowledgebase”. In: Communications of the ACM 57.10 (2014), pp. 78–
85.

[69] George A Miller. “WordNet: a lexical database for English”. In: Com-
munications of the ACM 38.11 (1995), pp. 39–41.

[70] Muhammad Mahbubur Rahman. Understanding the logical and seman-
tic structure of large documents. University of Maryland, Baltimore
County, 2018.

[71] André V Duarte et al. “Lumberchunker: Long-form narrative document
segmentation”. In: arXiv preprint arXiv:2406.17526 (2024).

[72] Weijie Chen et al. “KG-Retriever: Efficient Knowledge Indexing for
Retrieval-Augmented Large Language Models”. In: arXiv preprint
arXiv:2412.05547 (2024).

[73] Darren Edge et al. “From local to global: A graph rag approach to
query-focused summarization”. In: arXiv preprint arXiv:2404.16130
(2024).

[74] Ye Liu et al. “Dense hierarchical retrieval for open-domain question
answering”. In: arXiv preprint arXiv:2110.15439 (2021).

[75] Yu Wang et al. “Knowledge graph prompting for multi-document ques-
tion answering”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 38. 17. 2024, pp. 19206–19214.

92



[76] Qiang Sun et al. “Docs2KG: Unified Knowledge Graph Construction
from Heterogeneous Documents Assisted by Large Language Models”.
In: arXiv preprint arXiv:2406.02962 (2024).

[77] Zhilin Yang et al. “HotpotQA: A dataset for diverse, explainable multi-
hop question answering”. In: arXiv preprint arXiv:1809.09600 (2018).

[78] Paolo Ferragina and Ugo Scaiella. “Fast and accurate annotation of
short texts with wikipedia pages”. In: IEEE software 29.1 (2011),
pp. 70–75.

[79] Xingxuan Li et al. “Chain-of-knowledge: Grounding large language
models via dynamic knowledge adapting over heterogeneous sources”.
In: arXiv preprint arXiv:2305.13269 (2023).

[80] Yuyu Zhang et al. “Variational reasoning for question answering with
knowledge graph”. In: Proceedings of the AAAI conference on artificial
intelligence. Vol. 32. 1. 2018.

[81] Jing Zhang et al. “Subgraph retrieval enhanced model for multi-
hop knowledge base question answering”. In: arXiv preprint
arXiv:2202.13296 (2022).

[82] Jiaxin Shi et al. “Transfernet: An effective and transparent frame-
work for multi-hop question answering over relation graph”. In: arXiv
preprint arXiv:2104.07302 (2021).

[83] Bhaskarjit Sarmah et al. “Hybridrag: Integrating knowledge graphs and
vector retrieval augmented generation for efficient information extrac-
tion”. In: Proceedings of the 5th ACM International Conference on AI
in Finance. 2024, pp. 608–616.

[84] Nguyen Nam Doan et al. “A Hybrid Retrieval Approach for Advancing
Retrieval-Augmented Generation Systems”. In: Proceedings of the 7th
International Conference on Natural Language and Speech Processing
(ICNLSP 2024). 2024, pp. 397–409.

[85] Tyler Thomas Procko and Omar Ochoa. “Graph retrieval-augmented
generation for large language models: A survey”. In: 2024 Conference
on AI, Science, Engineering, and Technology (AIxSET). IEEE. 2024,
pp. 166–169.

[86] Wenhu Chen et al. “Program of thoughts prompting: Disentangling
computation from reasoning for numerical reasoning tasks”. In: arXiv
preprint arXiv:2211.12588 (2022).

93



[87] Daniel Bienstock et al. “A note on the prize collecting traveling sales-
man problem”. In: Mathematical programming 59.1 (1993), pp. 413–
420.

[88] Xin Wang, Yudong Chen, and Wenwu Zhu. “A survey on curriculum
learning”. In: IEEE transactions on pattern analysis and machine in-
telligence 44.9 (2021), pp. 4555–4576.

[89] Yu A Malkov and Dmitry A Yashunin. “Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small world
graphs”. In: IEEE transactions on pattern analysis and machine intel-
ligence 42.4 (2018), pp. 824–836.

[90] Barlas Oguz et al. “Unik-qa: Unified representations of structured
and unstructured knowledge for open-domain question answering”. In:
arXiv preprint arXiv:2012.14610 (2020).

[91] Peter Buneman et al. “Adding structure to unstructured data”. In:
Database Theory—ICDT’97: 6th International Conference Delphi,
Greece, January 8–10, 1997 Proceedings 6. Springer. 1997, pp. 336–
350.

94



Acronyms

AKGC Automatic Knowledge Graph Construction. 22

ANN Approximate Nearest Neighbor. 68, 69

DPR Dense Passage Retrieval. 16, 17

FFNN Feed Forward Neural Network. 55, 58, 79

IR Information Retrieval. 12, 13, 30

KB Knowledge Base. 2, 10, 17–19, 26, 27, 29, 31–33, 35, 37, 39, 59, 60, 83,
84

KG Knowledge Graph. 4–8, 11, 19–23, 25, 27, 28, 31, 33–38, 41, 44, 48, 54,
59, 63, 64, 83

KGQA Knowledge Graph Question Answering. 29

LLM Large Language Model. 1, 2, 10–16, 18–27, 30–32, 34–38, 43, 51–54,
64, 66, 69, 72, 75, 76, 79, 84

NEL Named Entity Linking. 6, 37, 60, 85

NER Named Entity Recognition. 6, 13, 22, 31, 35, 37, 60, 85

NLP Natural Language Processing. 13–15, 17, 22

NQ Natural Question. 10, 16, 18, 59–62, 64, 75, 78, 80

OWL Web Ontology Language. 20

PCST Price Collecting Steiner Tree. 29, 34

POS Part-of-Speech. 13

95



QA Question Answering. 1–3, 11–18, 23, 29, 36, 60, 64, 67, 77, 98

RAG Retrieval Augmented Generation. 2–4, 10, 12–14, 17–19, 22, 23, 25,
29–32, 34, 36, 38, 44, 48, 64, 68, 69, 75–77, 79

RDF Resource Description Framework. 20, 22

Seq2Seq Sequence-to-Sequence. 2, 17

TF-IDF Term Frequency-Inverse Document Frequency. 27, 31

VRN Variational Reasoning Network. 33

96



List of Figures

1.1 Comparison of different document representations . . . . . . . 5
1.2 Documents structuring into the Knowledge Base . . . . . . . . 6
1.3 Comparison of Retrieval Systems leveraging informational di-

mensions individually . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Retrieval Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 RAG architecture . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Complete Approach . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Example of the proposed solution for structuring a collection

in the KG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Graph Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Example of the proposed solution for chunks retrieval . . . . . 46
3.5 Path Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Hybrid Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Wikipedia Parser . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Features Importance in Retrieval . . . . . . . . . . . . . . . . 78

97



List of Tables

2.1 State-of-the-Art Methods for Document Structuring . . . . . . 24
2.2 Comparison of State-of-the-Art Methods for RAG retrieval . . 29

3.1 Summary table of the retrieval methods employed. . . . . . . . 48

4.1 Retrieval Results on NQ-dev-20% . . . . . . . . . . . . . . . . 71
4.2 Retrieval Results on NQ-MH-100 . . . . . . . . . . . . . . . . 74
4.3 Comparison of Vector and Hybrid RAG methods in MultiHop

and Non-MultiHop QA. . . . . . . . . . . . . . . . . . . . . . 77
4.4 Effectiveness of the solutions implemented (3 chunks) . . . . . 80
4.5 Performance with Limited Training Data . . . . . . . . . . . . 81

98


	Introduction
	Objectives
	Efficient Document Structuring
	Hybrid Retrieval System for QA
	Comparison with traditional RAG paradigms

	Key Research Questions and Thesis Outline

	Related Work on Question Answering Systems
	Overview of QA systems
	Large Language Models for QA
	Hybrid QA Models
	Retrieval Augmented Generation for QA
	Knowledge Graphs for QA
	Document structuring for QA
	Improving Retrieval in KGQA
	Node Retrieval
	Search Module
	Subgraph Retrieval
	Hybrid Retrieval

	Summary of Findings and Key Open Challenges

	Methodology
	Document Structuring
	Retrieval
	Retrieval Approaches
	Hybrid Retrieval


	Experiments
	Dataset
	Natural Questions Dataset
	Synthetic Multi-Hop Dataset

	Baselines
	Evaluation of the Retrieval System
	Retrieval Metrics
	Retrieval Performance

	Evaluation of the RAG System
	RAG Metrics
	RAG Performance

	Additional Evaluations and Findings
	Features Importance in Retrieval
	Evaluation of Key Methodological Choices
	Performance with Limited Training Data


	Conclusion and Future Developments
	List of Figures
	List of Tables

